
CONDITIONAL EXECUTION

Fundamentals of Computer Science I

logical AND logical OR logical

NOT

and or not

max = x; max = y;

yes no
x > y?

2

Outline

•Conditional Execution

• if …

• if … else …

• if … elif … else …

• Nested if … statements

Comparisons
• Given two numbers → return a boolean

4

operator meaning true example false example

== equal 7 == 7 7 == 8

!= not equal 7 != 8 7 != 7

< less than 7 < 8 8 < 7

<= less than or equal 7 <= 7 8 <= 7

> greater than 8 > 7 7 > 8

>= greater than or

equal

8 >= 2 8 >= 10

Is the sum of a, b and c equal to 0? (a + b + c) == 0
Is grade in the B range? (grade >= 80.0) and (grade < 90.0)
Is sumItems an even number? (sumItems % 2) == 0

Leap Year Example
• Years divisible by 4 but not by 100 → leap year

• Years divisible by 400 → leap year

5

year = int(input("Enter the year: "))
isLeapYear = False

Leap year if divisible by 4 but not by 100
isLeapYear = (year % 4 == 0) and (year % 100 != 0)

But also leap year if divisible by 400
isLeapYear = isLeapYear or (year % 400 == 0)
print(isLeapYear)

Sequential Flow of Control
6

import sys

product = sys.argv[1]

qty = int(sys.argv[2])

cost = float(sys.argv[3])

total = qty * cost

print("To buy ", qty, end = " ")

print(product, end = " ")

print("you will need $" + str(total))

time 0

time 1

time 2

time 3

time 4

time 5

time 6

Control Flow

• Default flow of control is sequential

• Interesting and powerful programs need:
• To skip over some lines

• To repeat lines

• Conditionals → sometimes skip parts

• A branching statement chooses between two or more possible
actions

• Loops → allow repetition of lines

• A loop statement repeats an action until a stopping condition
occurs

• We have talked a bit about for loops, and we will talk about loops more

if Statement
• Most common branching statement in all languages

• Evaluate a boolean expression, after the if

• If True, do some stuff

• [optional] If False, do some other stuff

if <expression>:
statement1
statement2
…

if <expression>:
statement1
statement2
…

else:
statement3
statement4
…

Indentation used to
denote a code "block":
All lines in block get
executed (in sequence) or
none of the them do

9

One-way if Statements

Boolean

Expression

true

Statement(s)

false

radius >= 0

true

 area = radius ** 2 * math.pi

 print("The area for the circle of radius ",

 radius, "is", area)

false

(A) (B)

if <boolean-expression>:
statement(s)

import math

radius = 2

if radius >= 0:

area = radius ** 2 * math.pi

print("The area for the circle of radius",

radius, "is", area)

10

The Two-way if Statement

if <boolean-expression>:

statement(s)-for-the-true-case

else:

statement(s)-for-the-false-case

Boolean

Expression

false true

Statement(s) for the false case Statement(s) for the true case

11

if...else Example

import math

radius = -1

if radius >= 0:

area = radius ** 2 * math.pi

print("The area for the circle of radius", radius, "is", area)

else:

print("Negative input")

12

Multiple Alternative if Statements

score = float(input("Enter the score: "))

if score >= 90:
grade = 'A'

elif score >= 80:
grade = 'B'

elif score >= 70:
grade = 'C'

elif score >= 60:
grade = 'D'

else:
grade = 'F'

print (grade)

13

Note
The else clause matches the if clause that is at the
same level of indentation

if 7 < 5:
print(“Wrong")
if 5 > 7:

print("really wrong")
else:

print("else goes with outer if")

14

TIP

even = True

if even == True:
print("TRUE")

if even:
print("TRUE again")

If you have a boolean variable, you can test its value directly
instead of testing to see if it is equal to True or False.

Booleans

15

a not a

true false

false true

a b a and b a or b

false false false false

false true false true

true false false true

true true true true

not a → “Is a set to false?”
a and b → “Are both a and b set to true?”
a or b → “Is either a or b (or both) set to true?”

if Examples

if x < 0:
x = -x

Take absolute value of x

import random
if random.random() < 0.5:

print("heads")
else:

print("tails")

Flip a fair coin and print out the results.

if x > y:
t = x
x = y
y = t

Put x and y into sorted order

if len(sys.argv) > 1:
num = int(sys.argv[1])

If a command line option is passed in, use it as the
value for num.

Let’s Try One!!

• If the unicorn is mythical, then it is immortal, but if it is not

mythical, then it is a mortal mammal. If the unicorn is

either immortal or a mammal, then it is horned. The

unicorn is magical if it is horned.

• Write a program named Unicorn.py that determines

whether unicorns are mythical, immortal, mortal, mammal,

magical or horned, and output these to the screen. Notice,

there is no user input to this program. Your program only

needs to use the above statements to determine which

characteristics are true.

17

The Ternary Conditional Operator

if n1 > n2:

max = n1

else:

max = n2

• Can be written as

max = (n1 if n1 > n2 else n2)

• A shortcut for the full if…else statement

• Should only be used for very short pieces of code

The Ternary Conditional Operator

• Useful with print statements.

print("You worked", hours, "hours. " if hours > 1 else "hour.")

Input Validation

• You should check user input to ensure that it is within a

valid or reasonable range. For example, consider a

program that converts feet to inches. You might write the

following:

• What if:

• The user types a negative number for feet?

• The user enters an unreasonable value like 100? Or a number

larger than can be stored in an int? (2,147,483,647)

feet = int(input(“Enter feet: “))

inches = feet * 12

Input Validation

• Address these problems by ensuring that the entered

values are reasonable:

feet = int(input(“Enter feet: “))

if feet >= 0 and feet < 10:

inches = feet * 12

...

Mathematical Expressions: Parentheses

and Precedence
• Parentheses can change the order in which arithmetic operations are

performed

• examples:

(cost + tax) * discount

(cost + (tax * discount))

• Without parentheses, an expressions is evaluated according to the

rules of precedence, with the lowest precedence listed at the top.

Operator Description

or Boolean OR

and Boolean AND

not x Boolean NOT

<, <=, >, >=, !=, ==
Comparisons, including membership

tests and identity tests

+, - Addition and subtraction

*, /, % Multiplication, division, remainder

** Exponentiation

Precedence Rules

• In what order are the operations performed?

score < min/2 - 10 or score > 90

score < (min/2) - 10 or score > 90

score < ((min/2) - 10) or score > 90

(score < ((min/2) - 10)) or score > 90

(score < ((min/2) - 10)) or (score > 90)

(score < ((min/2) - 10)) or (score > 90))

score < (min/2 – 10 or score > 90)

Summary

•Conditional Execution

• if …

• if … else …

• if … elif … else …

• Nested if … statements

You Try It

• Write a program with an if statement that reports whether

you passed or failed based on the character entered at

the command line. A, B, and C are passing, D and F are

not.

• Submit your program, named Grades.py, to the Activity02

dropbox on Moodle. You get 1 extra credit point for turning

something in, 2 points if it is correct.

• Don’t forget! Always put your name and a description in a

header comment!

