Some Formulas You May or May Not Need:

Lotteries

$L=[p, A ;(1-p), B]$
Preference: $\boldsymbol{A}>\boldsymbol{B}$

Indifference: $\boldsymbol{A} \sim \boldsymbol{B}$

Rationality Axioms
Orderability: $(A \succ B) \vee(B \succ A) \vee(A \sim B)$
Transitivity: $(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$
Continuity: $\boldsymbol{A}>\boldsymbol{B} \succ \boldsymbol{C} \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
Substitutability: $A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$
Monotonicity: $A \succ B \Rightarrow(p \geq q \Leftrightarrow[p, A ; 1-p, B] \succeq[q, A ; 1-q, B])$

Bellman Equations

$V^{*}(s)=\max _{a} Q^{*}(s, a)$
$Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$
$V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$
Value Iteration
$V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]$
Policy Evaluation
$V_{0}^{\pi}(s)=0$
$V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right]$

Policy Extraction
$\pi^{*}(s)=\operatorname{argmax}_{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$
Policy Improvement

$$
\pi_{i+1}(s)=\operatorname{argmax}_{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Reinforcement Learning

Temporal Difference Learning

Sample of $\mathrm{V}(\mathrm{s})$: sample $=R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)$
Update to $\mathrm{V}(\mathrm{s}): V^{\pi}(s) \leftarrow(1-\alpha) V^{\pi}(s)+(\alpha)$ sample
Same Update, Rewritten: $V^{\pi}(s) \leftarrow V^{\pi}(s)+\alpha\left(\right.$ sample $\left.-V^{\pi}(s)\right)$

Q-Learning

$Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]$
transition $=\left(s, a, r, s^{\prime}\right)$
$Q(s, a) \leftarrow(1-\alpha) Q(s, a)+(\alpha)\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right]$

Approximate Q-Learning
$V(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)$
$Q(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)$
transition $=\left(s, a, r, s^{\prime}\right)$
difference $=\left[r+\max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right]-Q(s, a)$
$Q(s, a) \leftarrow Q(s, a)+\alpha[$ difference $]$
$w_{i} \leftarrow w_{i}+\alpha[$ difference $] f_{i}(s, a)$

