The Potential of Memory Augmented Neural Networks

Dalton Caron Montana Technological University November 15, 2019

Overview

- Review of Perceptron and Feed Forward Networks
- Recurrent Neural Networks
- Neural Turing Machines
- Differentiable Neural Computer

Basic Perceptron Review

Gradient Descent on the Sigmoid Perceptron

Goal: Compute error gradient with respect to weights

Logit and Activation functions

Gradient Descent on the Sigmoid Perceptron

$$\begin{split} \frac{\partial y}{\partial w_k} &= \frac{dy}{dz} \frac{\partial z}{\partial w_k} = x_k y (1-y) \\ \frac{\partial E}{\partial w_k} &= \sum_i \frac{\partial E}{\partial y^{(i)}} \frac{\partial y^{(i)}}{\partial w_k} = -\sum_i x_k^{(i)} y^{(i)} (1-y^{(i)}) (t^{(i)} - y^{(i)}) \\ \Delta w_k &= \sum_i \alpha x^{(i)} y^{(i)} (1-y^{(i)}) (t^{(i)} - y^{(i)}) \end{split}$$

Backpropagation

Backpropagation Derivation

$$\begin{array}{l} \square \text{ Base case} \\ E = \frac{1}{2} \sum_{j \in output} (t_j - y_j)^2 \rightarrow \frac{\partial E}{\partial y_j} = -(t_j - y_j) \end{array}$$

□ Now we must calculate error for the previous layers

$$\frac{\partial E}{\partial y_i} = \sum_j w_{ij} y_j (1 - y_j) \frac{\partial E}{\partial y_j}$$

Full derivation in appendix.

Backpropagation Algorithm

Summed across the entire model

$$\Delta w_{ij} = -\sum_{k \in dataset} \alpha y_i^{(k)} y_j^{(k)} (1 - y_j^{(k)}) \frac{\partial E^{(k)}}{\partial y_j^{(k)}}$$

Note on Optimizers

□ Improvements to the neural network will be made by modifying the

network architecture rather than the optimizer

□ Further discussion on optimizers is outside the scope of the

presentation

Problems with Feed Forward Networks

□ Trouble with sequences of inputs

□ No sense of state

□ Unable to relate past input to present input

Recurrent Neural Network

Training a RNN with Backpropagation

□ Is there system differentiable?

 $\mathbf{1}^{\mathbf{\ell}} = \dots = \mathbf{1}^{\mathbf{l}} = \mathbf{1}^{\mathbf{l}} = \dots = \mathbf{1}^{\mathbf{\ell}} + \mathbf{1}^{\mathbf{l}} = \mathbf{1}^{$ $w_{rec}^{(3)}$ $w_{out}^{(3)}$ Win $w_{rec}^{(2)}$ $w_{out}^{(2)}$ W_{in} $w_{rec}^{(1)}$ $w_{in}^{(1)}$ $w_{out}^{(1)}$ $W_{rec}^{(0)}$

Vanishing and Exploding Gradients

$$\begin{split} h^{(t)} &= f(w_{in}^{(t)}i^{(t)} + w_{rec}^{(t-1)}h^{t-1}) \\ \frac{\partial h^{(t)}}{\partial i^{(t-k)}} &= f'(w_{in}^{(t)}i^{(t)} + w^{(t-1)}h^{(t-1)}) \frac{\partial}{\partial i^{(t-k)}} (w_{in}^{(t)}i^{(t)} + w_{rec}^{(t-1)}h^{(t-1)}) \\ \frac{\partial h^{(t)}}{\partial i^{(t-k)}} &= f'(w_{in}^{(t)}i^{(t)} + w^{(t-1)}h^{(t-1)}) \frac{\partial}{\partial i^{(t-k)}} w_{rec}^{(t-1)} \frac{\partial h^{(t-1)}}{\partial i^{(t-k)}} \\ \frac{\partial h^{(t)}}{\partial i^{(t-k)}} &| \leq |w_{rec}^{(t-1)}| \cdot |\frac{\partial h^{(t-1)}}{\partial i^{(t-k)}}| \\ \frac{\partial h^{(t)}}{\partial i^{(t-k)}} &| \leq |w_{rec}^{(t-1)}| \cdot \dots \cdot |w_{rec}^{(t-k)}| \cdot |\frac{\partial h^{(t-1)}}{\partial i^{(t-k)}}| \\ \frac{\partial h^{(t)}}{\partial i^{(t-k)}}| \leq |w_{rec}^{(t-1)}| \cdot \dots \cdot |w_{rec}^{(t-k)}| \cdot |w_{in}^{(t-k)}| = |w_{rec}|^k \cdot w_{in} \end{split}$$

Long Short-Term Memory Networks

Decline of RNNs

□ Past applications: Siri, Cortana, Alexa, etc.

□ Intensive to train due to network unrolling

Being replaced by attention based networks

Recall: Softmax Layer

NORMALIZEALLTHEOUTPUTS

$$softmax(z) = \frac{e^{z}}{\sum_{j} e^{z_{j}}}$$

~

What is Attention?

□ Focus on sections of input

□ Usually in form of probability distribution

A Practical Example

□ Language translator network

Problems and Solutions

- Human sentence inference
- Decoder only has access to state t-1 and t
- Decoder should see entire sentence
- □ But attention should only be given to input words

An Attention Augmented Model

The Case for External Memory

□ In order to solve problems, networks remember

Weight matrices

□ Recurrent state information

□ A general problem solver requires a general memory

The Neural Turing Machine

Why is the NTM Trainable?

- □ The NTM is fully differentiable
- □ Memory is accessed continuously (attention)
- □ Each operation is differentiable

Normalization Condition

 $\sum w_t(i) = 1, 0 \le w_t(i) \le 1, \forall i$ i

NTM Reading Memory

• Weight vector emitted by the read head. $r_t \leftarrow \sum_i w_t(i) M_t(i)$

NTM Writing Memory

Split into two operations: erase and add

Add and erase vectors emitted from write head $\widetilde{M}_t = M_{t-1}(i) \odot [1 - w_t(i)e_t]$ $M_t \leftarrow \widetilde{M}_t(i) + w_t(i)a_t$

NTM Addressing Mechanisms

- Read and write operations are defined
- Emissions from controller need to be defined
- NTM uses two kinds of memory addressing

Content-Based Addressing

- \Box Let k_{t} be a key vector from the controller
- \Box Let $K[\cdot, t]e$ a similarity function
- \Box Let β_t be a parameter that attenuates the focus

$$w_t^c(i) \leftarrow \frac{exp(\beta_t K[k_t, M_t(i)])}{\sum_j exp(\beta_t K[k_t, M_t(i)])}$$

- □ Focuses on shifting the current memory location
- Does so by rotational shift weighting
- □ Current memory location must be known

- \Box Let w_{t-1} be the access weighting from the last time step
- □ Let g_t be the interpolation gate from the controller which contains values from (0,1)
- □ Let w_t^c be the content-based address weighting □ The gate weighting equation is given as follows

$$w_t^g \leftarrow g_t w_t^c + (1 - g_t) w_{t-1}$$

 \Box Let *St* be a normalized probability distribution over all possible shifts

For example, let all possible shifts be [-1, 0, 1], could be expressed as a probability distribution [0.33, 0.66, 0]
 St

□ It is usually implemented as a softmax layer in the controller

The rotational shift applied to the gate weighting vector can now be given as a convolution operation

- □ Sharpening operation performed to make probabilities more extreme
- Let be a value emitted from a head where
- \Box The $\mathcal{F}_{\mathcal{T}}$ arpened weighting is giving by the following equation 1

 $w_t(i) \leftarrow \frac{\widetilde{w}_t(i)^{\gamma_t}}{\sum_j w_t(j)^{\gamma_t}}$

Closing Discussion on NTM Addressing

Given two addressing modes, three methods appear:

Content-based without memory matrix modification

□ Shifting for different addresses

□ Rotations allow for traversal of the memory

□ All addressing mechanism are differentiable

NTM Controller

Many parameters, such as size of memory and number of read write heads

Independent neural network feeds on problem input and NTM read heads

□ Long short-term memory network usually used for controller

NTM Limitations

□ No mechanism preventing memory overwriting

□ No way to reuse memory locations

□ Cannot remember if memory chunks are contiguous

The Differentiable Neural Computer

Developed to compensate for the NTMs issues

NTM Similarities and Notation Changes

DNC has R weightings for read heads

$$w_t^r(0), w_t^r(1), \dots w_t^r(R-1)$$

□ Write operations are given as

$$M_t(i) = M_{t-1}(i) \odot [1 - w_t(i)e_t] + w_t^w(i)v_t$$

Read operations are given as

$$r_t \leftarrow \sum_{i=0}^{R-1} M_t(i, \cdot) w_t^r(i)$$

Usage Vectors and the Free List

- ❑ Let ^utbe a vector of size N that contains values in the interval [0,1] that represents how much the corresponding memory address is used at time t
- \Box u_t Is initialize to all zeroes and is updated over time
- □ What memory is not being used?

Allocation Weighting

- \Box Let ζ_t be a usage vector sorted in descending order
- □ The allocation weighting is then given as the following equation

$$a_t(\zeta_t(j)) = (1 - u_t(\zeta_t(j))) \prod_{i=0}^{j-2} u_t(\zeta_t(i))$$

Write Weighting

- Let g_t^w be defined as the write gate taking a value on the interval (0,1), emitted from the interface vector
- Let g_t^a be defined as the read gate taking a value on the interval (0,1), emitted from the interface vector
- \Box Let w_t^c be the weighting from content-based addressing
- □ The final write weighting vector is given as

$$w_t^w = g_t^w [g_t^a a_t + (1 - g_t^a) w_t^c]$$

$$\Box$$
 What if $u_t = 2$

Memory Reuse

- U We must decide what memory is reused
- □ Let Ψ_t be defined as an N length vector that takes on values in the interval [0,1] known as the retention vector
- Let f_t^{ι} be a value from the interface vector in the interval [0,1] known as the free gate
- \Box Let w_t^r be a read vector weighting
- □ The retention vector is given as

$$\Psi_t = \prod_{i=0}^{R-1} (1 - f_t^i w_{t-1}^r(i))$$

Updating the Usage Vector

- Remember that Ust the usage vector
- **Q** Remember that w_t^w is a write vector weighting
- □ The update to the usage vector is given as

$$u_t = (u_{t-1} + w_{t-1}^w - u_{t-1} \odot w_{t-1}^w) \odot \Psi_t$$

Precedence

- In order to memorize jumps in memory, the temporal link matrix is provided
- □ To update this matrix, the precedence vector is defined

The Temporal Link Matrix

- Let Ltbe an N× Matrix taking values on the interval [0,1] where indicates how Lik(eig jo)cation i was written to before location j
 It is initialized to 0
- □ The update equation for the temporal link matrix is given as

$$L_t(i,j) = (1 - w_t^w(i) - w_t^w(j))L_{t-1}(i,j) + w_t^w(i)p_{t-1}(j)$$

DNC Read Head

DNC Read Head

To achieve location-based addressing, a forward and backward weighting are generated

$$f_t(i) = L_t w_{t-1}^r(i)$$

$$b_t(i) = L_{t-1}^T w_{t-1}^r(i)$$

DNC Read Head

□ At last, the final read weighting is given as

$$w_t^r(i) = \pi_t(i,1)b_t(i) + \pi_t(i,2)w_t^c(i) + \pi_t(i,3)f_t(i)$$

 $\Box \, \pi$ are known as the read modes (backward, lookup, forward) and are emitted from the interface vector

The Controller and Interface Vector

- \Box Let $\eta_{\rm be}$ the function computed by the controller
- \Box Let χt be the controller input concatenated with the last read vectors
- Let the output of the controller be defined as
- The interface vector is a by $R \times W + 3W + 5R + 3$

$$\Phi_t = [k_t^r(0), \dots, k_t^r(R-1), \beta_t^r(0), \dots, \beta_t^r(R-1), \beta_t^w, e_t, v_t, f_t(0), \dots, f_t(R-1), g_t^a, g_t^w, \pi_t(0), \dots, \pi_t(R-1)]$$

Interface Vector Transformations

To ensure interface vector values sit within the required interval, a series of transformations are applied

$$e_t = \sigma(e_t), f_t(i) = \sigma(f_t(i)), g_t^a = \sigma(g_t^a), g_t^w = \sigma(g_t^w)$$

$$\beta_t^r(i) = oneplus(\beta_t^r(i)), \beta_t^w = oneplus(\beta_t^w)$$

where $oneplus(z) = 1 + log(1 + e^z)$
 $\pi_t(i) = softmax(\pi_t(i))$

Final Controller Output

□ Let W_y be a learnable weights matrix of size □ Let $v_t = W_y \eta(\chi_y)$ the pre output vector □ Let W_r be a learnable weights matrix of size □ The final controller output is given as

 $y_t = v_t + W_r[r_t(0), ..., r_t(R-1)]$

□ With this, the formal description of the DNC is complete

 $|\eta| \times Y$

 $(R \times W) \times Y$

DNC Applications

- bAbi dataset
 - "John picks up a ball. John is at the playground. Where is the ball?"
 - DNC outperforms LSTM
- □ Trained on shortest path, traversal, inference labels
 - Given London subway and family tree
 - □ LSTM fails, DNC achieves 98.8% accuracy

A Conclusion of Sorts

- □ DNC outperforms NTM and LSTM
- □ Can there be a continuous computer architecture?
- □ Scalability?
- □ A general purpose artificial intelligence?

End

Appendix

Complete derivation for error derivatives of layer i expressed in terms of the error derivatives of layer j

 $\frac{\partial E}{\partial y_i} = \sum_j \frac{\partial E}{\partial z_j} \frac{dz_j}{dy_i} = \sum_j w_{ij} \frac{\partial E}{\partial z_j}$ $\frac{\partial E}{\partial z_j} = \frac{\partial E}{\partial y_j} \frac{dy_j}{dz_j} = y_j (1 - y_j) \frac{\partial E}{\partial y_j}$ $\frac{\partial E}{\partial y_i} = \sum_j w_{ij} y_j (1 - y_j) \frac{\partial E}{\partial y_j}$ $\frac{\partial E}{\partial w_{ij}} = \frac{\partial z_j}{\partial w_{ij}} \frac{\partial E}{z_j} = y_i y_j (1 - y_j) \frac{\partial E}{\partial y_j}$