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Overview

[ Review of Perceptron and Feed Forward Networks
A Recurrent Neural Networks

A Neural Turing Machines

A Differentiable Neural Computer



Basic Perceptron Review
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Gradient Descent on the Sigmoid Perceptron

A Goal: Compute error gradient with respect to weights
A Logit and Activation functions
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Gradient Descent on the Sigmoid Perceptron
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Gradient Descent on the Sigmoid Perceptron
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Backpropagation

A Induction problem?




Backpropagation Derivation

1 Base case
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A Now we must calculate error for the previous layers
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Full derivation in appendix.



Backpropagation Algorithm

A The change in weights
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Note on Optimizers

d Improvements to the neural network will be made by modifying the
network architecture rather than the optimizer
d Further discussion on optimizers is outside the scope of the

presentation



Problems with Feed Forward Networks

A Trouble with sequences of inputs
A No sense of state

A Unable to relate past input to present input



Recurrent Neural Network

Output Layer
Hidden Layer



Training a RNN with Backpropagation

A Is there system differentiable?
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Vanishing and Exploding Gradients
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Long Short-Term Memory Networks

A How much information flows into the next state is regulated
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Decline of RNNs

A Past applications: Siri, Cortana, Alexa, etc.
d Intensive to train due to network unrolling

A Being replaced by attention based networks



Recall: Softmax Layer
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What is Attention?

A Focus on sections of input

A Usually in form of probability distribution



A Practical Example

d Language translator network
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Problems and Solutions

1 Human sentence inference
A Decoder only has access to state t-1 and t
d Decoder should see entire sentence

4 But attention should only be given to input words



An Attention Augmented Model
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The Case for External Memory

A In order to solve problems, networks remember
3 Weight matrices
d Recurrent state information

A A general problem solver requires a general memory



The Neural Turing Machine

Instruction 1 Output 1
Instruction 2 Output 2
Instruction 3 Output 3

Output 1
Output 2
Output 3

Instruction 4 Output 4 Output 4
Instruction 5 Output 5 OQutput 5
Instruction 6 Qutput 6 Output 6

Output 7
Output 8

Read Head Write Head
Memory

Matrix

Instruction 7 Qutput 7
Instruction 8 Qutput 8

Write bus




Why is the NTM Trainable?

d The NTM is fully differentiable
1 Memory is accessed continuously (attention)

A Each operation is differentiable



Normalization Condition

Y wili) = 1,0 < wy(i) < 1,Vi
1



NTM Reading Memory

d Weight vector emitted by the read head.

re < Y wi(i)My(i)
)



NTM Writing Memory

A Split into two operations: erase and add

d Add and erase vectors emitted from write head

My = My_1(i) ® [L — wy(i)es]
M, + Mt(i) + we(2)ay



NTM Addressing Mechanisms

d Read and write operations are defined
A Emissions from controller need to be defined

A NTM uses two kinds of memory addressing



Content-Based Addressing

d Let k;jbe a key vector from the controller
3 Let K[', t]e a similarity function
A Let 5tbe a parameter that attenuates the focus
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Location-Based Addressing

A Focuses on shifting the current memory location
A Does so by rotational shift weighting

A Current memory location must be known



Location-Based Addressing

d Let W¢—Dpe the access weighting from the last time step

a Let Gbe the interpolation gate from the controller which contains
values from (0,1)

d Let ’wgbe the content-based address weighting

1 The gate weighting equation is given as follows

wf’ — grwy + (1 — grwe_q



Location-Based Addressing

Q Let Stbe a normalized probability distribution over all possible shifts

A For example, let all possible shifts be [-1, 0, 1], could be expressed as a
probability distribution [0.33, 0.66, O] St

A Itis usually implemented as a softmax layer in the controller



Location-Based Addressing

A The rotational shift applied to the gate weighting vector can now be
given as a convolution operation
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Location-Based Addressing

A Sharpening operation performed to make probabilities more extreme
d Let Dbe avalue emitted from a head where
[ The'tharpened weighting is giving by the following eqmatiﬁn 1
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Closing Discussion on NTM Addressing

d Given two addressing modes, three methods appear:
d Content-based without memory matrix modification
A Shifting for different addresses
J Rotations allow for traversal of the memory

A All addressing mechanism are differentiable



NTM Controller

d Many parameters, such as size of memory and number of read write
heads

d Independent neural network feeds on problem input and NTM read
heads

A Long short-term memory network usually used for controller



NTM Limitations

A No mechanism preventing memory overwriting
4 No way to reuse memory locations

A Cannot remember if memory chunks are contiguous



The Differentiable Neural Computer

A Developed to compensate for the NTMs issues

d Memory usage
a Controller b Read and write heads € Memory and temporal links

L




NTM Similarities and Notation Changes

1 DNC has R weightings for read heads
wy (0), wy (1), ..wy (R — 1)
A Write operations are given as
Mi(1) = My—1(7) © [L — we(2)et] + wy” (2)vt

d Read operations are given as

R—1
re < > My(i,-Jwy (i)
i=0



Usage Vectors and the Free List

a Let Utbe a vector of size N that contains values in the interval [0,1]
that represents how much the corresponding memory address is used

at time t
d Utls initialize to all zeroes and is updated over time

[ What memory is not being used?



Allocation Weighting

d Let Ctbe a usage vector sorted in descending order
A The allocation weighting is then given as the following equation

at(Ce(7)) = (1 — w (G (7 H ut(Ge (%)



Write Weighting

d Let g%”be defined as the write gate taking a value on the interval
(0,1), emitted from the interface vector

A Let g?be defined as the read gate taking a value on the interval (0,1),
emittec(l3 from the interface vector

d Let Wtbe the weighting from content-based addressing

A The final write weighting vector is given as

wy = g¢ |9rar + (1 — g Jwy]

a Whatif ug =2



Memory Reuse

d We must decide what memory is reused

3 Let Wibe defined as an N length vector that takes on values in the
interval [0,1] known as the retention vector

d Let ft?“be a value from the interface vector in the interval [0,1] known
as the free gate

d Let ’wg_@e a read vector weighting

A The retention vector is given as

R—1

U= [T = Fwi_1())

1=0)



Updating the Usage Vector

d Remember that %tthe usage vector
O Remember that  Wisia write vector weighting
A The update to the usage vector is given as

ur = (Ur—1 + w?—l —Ut—1© w?—ﬂ © Wt



Precedence

d In order to memorize jumps in memory, the temporal link matrix is

provided
d To update this matrix, the precedence vector is defined



The Temporal Link Matrix

a Let Ltbean [N x fhtrix taking values on the interval [0,1] where
indicates how[ﬂ(ély j@cation | was written to before location |

3 Itis initialized to O

A The update equation for the temporal link matrix is given as

Li(i,7) = (1 —wy’ (1) — wi’ (7)) Le—1(2, ) + wi’ (i) pe—1(7)



DNC Read Head

4 Recall function to generate ’wf
wg(z) { 6117})(515}([}615’ Mt(?,)])
D exp(BeK ke, Mi(1)))

K?" T _ )
d Let £} ¢and @@e emitted from the interface vector



DNC Read Head

d To achieve location-based addressing, a forward and backward
weighting are generated

fi(1) = Lywy_(7)
b (i) = Ly_qwj_(i)



DNC Read Head

d At last, the final read weighting is given as

wy (1) = (2, 1)be (1) + m(2, 2)wy (2) + (2, 3) fe (1)
7T are known as the read modes (backward, lookup, forward) and are
emitted from the interface vector



The Controller and Interface Vector

3 Let The the function computed by the controller
d Let Xe the controller input concatenated with the last read vectors
A Let the output of the controller be defined as

d The interface vector is a Ie@‘;iéﬁ(jy)ector given
by RxW +3W +5R+3

by = UC{(OL e kg(R - 1)a 65(0)1 e Bg(R - 1)3
ﬁtwa Ct, Ut, ft(o)a ceey ft(R T 1)3 gtaa giﬂaﬂ-t(o)a ceey ﬂ-t(R o 1)]



Interface Vector Transformations

d To ensure interface vector values sit within the required interval, a
series of transformations are applied

et = olet), ft(1) = o(f(i), g¢ = o(gt), 9¢ = 0(g¢)

Bi (1) = oneplus(5{ (1)), B’ = oneplus(B;")
where oneplus(z) =1+ log(1 + €*)

m¢(1) = softmax(m (1))



Final Controller Output

a Let Wg}be a learnable weights matrix of size |77| XY
d Let Ut = Wy’ﬁ(Xbé the pre output vector
2 Let Wibe a learnable weights matrix of size (R X W) XY

1 The final controller output is given as
yr = v¢ + Were(0), ..., m¢(R — 1)]

A With this, the formal description of the DNC is complete



DNC Applications

d bADbi dataset
1 “John picks up a ball. John is at the playground. Where is the
ball?”
A DNC outperforms LSTM
d Trained on shortest path, traversal, inference labels
d Given London subway and family tree
1 LSTM fails, DNC achieves 98.8% accuracy



A Conclusion of Sorts

A DNC outperforms NTM and LSTM
A Can there be a continuous computer architecture?
A Scalability?

A A general purpose artificial intelligence?
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Appendix

A Complete derivation for error derivatives of layer i expressed in terms of the
error derivatives of layer j
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