CSCI 446: Artificial Intelligence Particle Filters and Applications of HMMs

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

HMMs

- Particle filters
- Demo bonanza!
- Most-likely-explanation queries
- Applications:
 - "I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis"
 - Robot localization / mapping
 - Speech recognition

[Demo: Ghostbusters Markov Model (L15D1)]

Recap: Reasoning Over Time

Hidden Markov models

P(E|X)

Х	E	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Inference: Base Cases

Inference: Base Cases

 $P(X_2)$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$
$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Passage of Time

Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$

• Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t) B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.76 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

As time passes, uncertainty "accumulates"

T = 1

T = 2

Inference: Base Cases

$P(X_1|e_1)$

 $P(x_1|e_1) = P(x_1, e_1) / P(e_1)$ $\propto_{X_1} P(x_1, e_1)$ $= P(x_1) P(e_1|x_1)$

Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

• Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t}) / P(e_{t+1}|e_{1:t})$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

 $= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$

 $= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$

• Or, compactly:

 $B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

 $B(X) \propto P(e|X)B'(X)$

Recap: Filtering

Elapse time: compute P(X_t | e_{1:t-1}) $P(x_t | e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) \cdot P(x_t | x_{t-1})$ Observe: compute P(X_t | e_{1:t}) $P(x_t | e_{1:t}) \propto P(x_t | e_{1:t-1}) \cdot P(e_t | x_t)$

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

(X ₁)	$\rightarrow X_2$		
Ĭ	Ť		$P(X_1 \mid E_1$
(E_1)	(E_2)		$P(X_2 \mid E_1$
		- (

[Demo: Ghostbusters Exact Filtering (L15D2)]

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|</p>
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

(3,3)(2,3)(3,3)(3,2)

(3,3)(3,2)(1,2)(3,3)

(3,3) (2,3)

(3,2)(2,3)(3,2)

(3,1)

(3,3)(3,2)

(1,3)

(2,3) (3,2)(2,2)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x) $B(X) \propto P(e|X)B'(X)$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particle Filtering: Resample

Particles:

(3,3) (3,2) (1,3)(2,3)(3,2) (3,2)

(3,2) w=.9

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

(2,3) w=.2	
(3,2) w=.9	
(3,1) w=.4	
(3,3) w=.4	
(3,2) w=.9	
(1,3) w=.1	
(2,3) w=.2	
(3,2) w=.9	
(2,2) w=.4	
(New) Particles:	
(3.2)	
(2,2)	
(3.2)	
(2,3)	
(3 3)	
(3,2)	
(1 3)	
(2 3)	
(2,2)	
(3,2)	

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

			Elapse			Weight				Res	ample			
	•				•	N	•	•	•				•	•
•		•		•									•	
			·		•	,			•					•
Partic	les:			Particles:			F	Particles:				(Ne	w) Partio	cles:
(3,3)			(3,2)			(3,2) w=.9			(3,2)				
(2,3)			(2,3)			(2,3) w=.2				(2,2)			
(3,3)			(3,2)			(3,2) w=.9					(3,2)		
(3,2)			(3,1)		(3,1) w=.4			(2,3)					
(3,3)			(3,3)			(3	3,3) w=.	4			(3	3,3)	
(3,2	(3,2) (3,2)		(3,2) w=.9				(3,2)							
(1,2	(1,2) (1,3)			(1,3) w=.1				(1,3)						
(3,3	3) (2,3)			(2,3) w=.2				(2,3)						
(3,3	(3,3) (3,2)			(3,2) w=.9					(3,2)					
(2,3	(2,3) (2,2)			(2,2) w=.4			(3,2)							

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Video: global-floor.gif]

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

Dynamic Bayes nets are a generalization of HMMs

[Demo: pacman sonar ghost DBN model (L15D6)]

Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until P(X_T | e_{1:T}) is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^{a} | G_1^{a}) * P(E_1^{b} | G_1^{b})$
- **Resample:** Select prior samples (tuples of values) in proportion to their likelihood

Most Likely Explanation

HMMs: MLE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X|X_{-1})$
 - Emissions: P(E|X)

New query: most likely explanation:

 $\underset{x_{1:t}}{\arg\max} P(x_{1:t}|e_{1:t})$

New method: the Viterbi algorithm

State Trellis

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi Algorithms

Forward Algorithm (Sum)

 $f_t[x_t] = P(x_t, e_{1:t})$

Viterbi Algorithm (Max)

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

Al in the News

I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis Brad Miller, Ling Huang, A. D. Joseph, J. D. Tygar (UC Berkeley)

Challenge

- Setting
 - User we want to spy on use HTTPS to browse the internet
- Measurements
 - IP address
 - Sizes of packets coming in
- Goal
 - Infer browsing sequence of that user
- E.g.: medical, financial, legal, ...

HMM

Transition model

- Probability distribution over links on the current page + some probability to navigate to any other page on the site
- Noisy observation model due to traffic variations
 - Caching
 - Dynamically generated content
 - User-specific content, including cookies
 - \rightarrow Probability distribution P(packet size | page)

Results

BoG = described approach, others are prior work

Today

HMMs

- Particle filters
- Demo bonanza!
- Most-likely-explanation queries
- Applications:
 - "I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis"
 - Speech recognition

