
CSCI 446: Artificial Intelligence
Particle Filters and Applications of HMMs

Instructor: Michele Van Dyne

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Today

 HMMs

 Particle filters

 Demo bonanza!

 Most-likely-explanation queries

 Applications:

 “I Know Why You Went to the Clinic: Risks and Realization of HTTPS 
Traffic Analysis”

 Robot localization / mapping

 Speech recognition



Recap: Reasoning Over Time

 Markov models

 Hidden Markov models
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[Demo: Ghostbusters Markov Model (L15D1)]



Inference: Base Cases
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Inference: Base Cases

X2X1



Passage of Time

 Assume we have current belief P(X | evidence to date)

 Then, after one time step passes:

 Basic idea: beliefs get “pushed” through the transitions
 With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes

X2X1

 Or compactly:



Example: Passage of Time

 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Inference: Base Cases

E1

X1



Observation

 Assume we have current belief P(X | previous evidence):

 Then, after evidence comes in:

 Or, compactly:

E1

X1

 Basic idea: beliefs “reweighted” 
by likelihood of evidence

 Unlike passage of time, we have 
to renormalize



Example: Observation

 As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Recap: Filtering

Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )
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[Demo: Ghostbusters Exact Filtering (L15D2)]



Particle Filtering



Particle Filtering
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 Filtering: approximate solution

 Sometimes |X| is too big to use exact inference
 |X| may be too big to even store B(X)
 E.g. X is continuous

 Solution: approximate inference
 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number of samples
 But: number needed may be large
 In memory: list of particles, not states

 This is how robot localization works in practice

 Particle is just new name for sample



Representation: Particles

 Our representation of P(X) is now a list of N particles (samples)
 Generally, N << |X|

 Storing map from X to counts would defeat the point

 P(x) approximated by number of particles with value x
 So, many x may have P(x) = 0! 

 More particles, more accuracy

 For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)



Particle Filtering: Elapse Time

 Each particle is moved by sampling its next 
position from the transition model

 This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

 Here, most samples move clockwise, but some move in 
another direction or stay in place

 This captures the passage of time
 If enough samples, close to exact values before and 

after (consistent)

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
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 Slightly trickier:

 Don’t sample observation, fix it

 Similar to likelihood weighting, downweight
samples based on the evidence

 As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Particle Filtering: Resample

 Rather than tracking weighted samples, we 
resample

 N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

 This is equivalent to renormalizing the 
distribution

 Now the update is complete for this time step, 
continue with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Recap: Particle Filtering

 Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Robot Localization

 In robot localization:
 We know the map, but not the robot’s position

 Observations may be vectors of range finder readings

 State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X)

 Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

 SLAM: Simultaneous Localization And Mapping
 We do not know the map or our location

 State consists of position AND map!

 Main techniques: Kalman filtering (Gaussian HMMs) 
and particle methods

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

 We want to track multiple variables over time, using 
multiple sources of evidence

 Idea: Repeat a fixed Bayes net structure at each time

 Variables from time t can condition on those from t-1

 Dynamic Bayes nets are a generalization of HMMs
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[Demo: pacman sonar ghost DBN model (L15D6)]



Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Exact Inference in DBNs

 Variable elimination applies to dynamic Bayes nets

 Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) 
is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors 
for current time only
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DBN Particle Filters

 A particle is a complete sample for a time step

 Initialize: Generate prior samples for the t=1 Bayes net

 Example particle: G1
a = (3,3) G1

b = (5,3) 

 Elapse time: Sample a successor for each particle 

 Example successor: G2
a = (2,3) G2

b = (6,3)

 Observe: Weight each entire sample by the likelihood of the evidence conditioned on 
the sample

 Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b ) 

 Resample: Select prior samples (tuples of values) in proportion to their likelihood



Most Likely Explanation



HMMs: MLE Queries

 HMMs defined by
 States X
 Observations E
 Initial distribution:
 Transitions:
 Emissions:

 New query: most likely explanation:

 New method: the Viterbi algorithm
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State Trellis

 State trellis: graph of states and transitions over time

 Each arc represents some transition

 Each arc has weight

 Each path is a sequence of states

 The product of weights on a path is that sequence’s probability along with the evidence

 Forward algorithm computes sums of paths, Viterbi computes best paths
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Forward / Viterbi Algorithms
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AI in the News

I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis
Brad Miller, Ling Huang, A. D. Joseph, J. D. Tygar (UC Berkeley)



Challenge

 Setting

 User we want to spy on use HTTPS to browse the internet

 Measurements

 IP address

 Sizes of packets coming in

 Goal

 Infer browsing sequence of that user

 E.g.: medical, financial, legal, …



HMM

 Transition model

 Probability distribution over links on the current page + some 
probability to navigate to any other page on the site

 Noisy observation model due to traffic variations

 Caching

 Dynamically generated content

 User-specific content, including cookies

 Probability distribution P( packet size | page )



Results

BoG = described approach, others are prior work



Today

 HMMs

 Particle filters

 Demo bonanza!

 Most-likely-explanation queries

 Applications:

 “I Know Why You Went to the Clinic: 
Risks and Realization of HTTPS 
Traffic Analysis”

 Speech recognition


