CS 188: Artificial Intelligence

Bayes' Nets: Inference

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

E	$P(E)$
$+e$	0.002
$-e$	0.998

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

$P(+b,-e,+a,-j,+m)=$
$P(+b) P(-e) P(+a \mid+b,-e) P(-j \mid+a) P(+m \mid+a)=$

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

A	J	$P(J \mid A)$
$+a$	$+j$	0.9
$+a$	$-j$	0.1
$-a$	$+j$	0.05
$-a$	$-j$	0.95

$P(+b,-e,+a,-j,+m)=$
$P(+b) P(-e) P(+a \mid+b,-e) P(-j \mid+a) P(+m \mid+a)=$
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Bayes' Nets

Representation

Conditional Independences

- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Inference is NP-complete
- Sampling (approximate)
- Learning Bayes' Nets from Data

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
- Posterior probability

$$
P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)
$$

- Most likely explanation:
$\operatorname{argmax}_{q} P\left(Q=q \mid E_{1}=e_{1} \ldots\right)$

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
- We want:

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 1: Select the entries consistent with the evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$ of Query and evidence

* Works fine with multiple query variables, too
- Step 3: Normalize

$$
P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$
P(B \mid+j,+m) \quad \propto_{B} P(B,+j,+m)
$$

$$
=\sum_{e, a} P(B, e, a,+j,+m)
$$

$$
=\sum_{e, a} P(B) P(e) P(a \mid B, e) P(+j \mid a) P(+m \mid a)
$$

$$
\begin{aligned}
= & P(B) P(+e) P(+a \mid B,+e) P(+j \mid+a) P(+m \mid+a)+P(B) P(+e) P(-a \mid B,+e) P(+j \mid-a) P(+m \mid-a) \\
& P(B) P(-e) P(+a \mid B,-e) P(+j \mid+a) P(+m \mid+a)+P(B) P(-e) P(-a \mid B,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

Inference by Enumeration?

$P($ Antilock \mid observed variables $)=?$

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

- First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

- Joint distribution: $\mathrm{P}(\mathrm{X}, \mathrm{Y})$
- Entries $P(x, y)$ for all x, y
- Sums to 1

$$
P(T, W)
$$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Selected joint: $\mathrm{P}(\mathrm{x}, \mathrm{Y})$
- A slice of the joint distribution
- Entries $P(x, y)$ for fixed x, all y
- Sums to $\mathrm{P}(\mathrm{x})$
$P($ cold,$W)$

T	W	P
cold	sun	0.2
cold	rain	0.3

- Number of capitals = dimensionality of the table

Factor Zoo II

- Single conditional: $\mathrm{P}(\mathrm{Y} \mid \mathrm{x})$
- Entries $P(y \mid x)$ for fixed x, all
- Sums to 1

$P(W \mid$ cold $)$

T	W	P
cold	sun	0.4
cold	rain	0.6

- Family of conditionals: $P(X \mid Y)$
- Multiple conditionals
- Entries $P(x \mid y)$ for all x, y
- Sumsto $|\mathrm{Y}|$

Factor Zoo III

- Specified family: $P(y \mid X)$
- Entries P(y|x) for fixed y, but for all x
- Sums to ... who knows!
$P(\operatorname{rain} \mid T)$
\(\left.\begin{array}{|c|c|c|}\hline T \& \mathrm{W} \& \mathrm{P}

\hline hot \& rain \& 0.2

\hline cold \& rain \& 0.6

\hline\end{array}\right\}\)| $P($ rain \mid hot $)$ |
| :--- |
| $P($ rain \mid cold $)$ |

Factor Zoo Summary

- In general, when we write $P\left(Y_{1} \ldots Y_{N} \mid X_{1} \ldots X_{M}\right)$
- It is a "factor," a multi-dimensional array
- Its values are $P\left(y_{1} \ldots y_{N} \mid x_{1} \ldots x_{M}\right)$
- Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

- Random Variables
- R: Raining
- T: Traffic
- L: Late for class!

$$
\begin{aligned}
P(L) & =? \\
& =\sum_{r, t} P(r, t, L) \\
& =\sum_{r, t} P(r) P(t \mid r) P(L \mid t)
\end{aligned}
$$

$P(R)$

$+r$	0.1
$-r$	0.9

$P(T \mid R)$

$+r$	$+t$	0.8
$+r$	$-t$	0.2
$-r$	$+t$	0.1
$-r$	$-t$	0.9

$P(L \mid T)$		
+t	+	0.3
+t	-	0.7
-t	+1	0.1
-t	-	0.9

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

$P(R)$		$P(T \mid R)$			$P(L \mid T)$		
+r	0.1	+r	+t	0.8	+t	+	0.3
-r	0.9	+r	-t	0.2	+t	-1	0.7
		-r	+t	0.1	-t	+	0.1
		-r	-t	0.9	-t	-	0.9

- Any known values are selected
- E.g. if we know $L=+\ell$, the initial factors are
$P(R)$

$+r$	0.1
$-r$	0.9

$P(T \mid R)$

+r	+t	0.8
+r	-t	0.2
-r	tt	0.1
-r	-t	0.9

$$
P(+\ell \mid T)
$$

- Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables
 involved
- Example: Join on R

- Computation for each entry: pointwise products

$$
\forall r, t: \quad P(r, t)=P(r) \cdot P(t \mid r)
$$

Example: Multiple Joins

\Rightarrow

Example: Multiple Joins

$$
P(R)
$$

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:
$P(R, T)$

$+r$	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

$$
\begin{gathered}
\text { sum } R
\end{gathered}
$$

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

(R) $\quad P(L)=$?

- Inference by Enumeration

- Variable Elimination

Eliminate t

Marginalizing Early! (aka VE)

Evidence

- If evidence, start with factors that select that evidence
- No evidence uses these initial factors:

$P(R)$	
$+r$	0.1
$-r$	0.9

$P(T \mid R)$		
+r	+t	0.8
	+t	0.1

$$
P(L \mid T)
$$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-I	0.9

- Computing $P(L \mid+r)$ the initial factors become:

$P(+r)$	
$+r \mid 0.1$	

$$
\begin{gathered}
P(T \mid+r) \\
\begin{array}{c|c|c|c|}
\hline+r & +1 & 0.8 \\
\hline+r & -\mathrm{t} & 0.2 \\
\hline
\end{array}
\end{gathered}
$$

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

- We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
- E.g. for $P(L \mid+r)$, we would end up with:
$P(+r, L)$

$+r$	$+I$	0.026			
$+r$	$-I$	0.074	$\quad \square$$\quad$	$+I$	0.26
:---:	:---:				
$-I$	0.74				

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)

Example

$$
P(B \mid j, m) \propto P(B, j, m)
$$

$$
P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)
$$

Choose A

$$
\left.\begin{array}{l}
P(A \mid B, E) \\
P(j \mid A) \\
P(m \mid A)
\end{array} \quad \boxed{\times} P(j, m, A \mid B, E) \quad \sum\right\rangle P(j, m \mid B, E)
$$

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Example

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

$P(B) \quad P(j, m \mid B)$

Finish with B

$$
\begin{array}{cccc}
P(B) \\
P(j, m \mid B)
\end{array} \stackrel{\times}{ } \quad P(j, m, B) \quad \underset{\text { Normalize }}{ } P(B \mid j, m)
$$

Same Example in Equations

$$
P(B \mid j, m) \propto P(B, j, m)
$$

$P(B)$	$P(E)$	$P(A \mid B, E)$	$P(j \mid A)$	$P(m \mid A)$

$$
\begin{aligned}
P(B \mid j, m) & \propto P(B, j, m) \\
& =\sum_{e, a} P(B, j, m, e, a) \\
& =\sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\sum_{e} P(B) P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\sum_{e} P(B) P(e) f_{1}(B, e, j, m) \\
& =P(B) \sum_{e} P(e) f_{1}(B, e, j, m) \\
& =P(B) f_{2}(B, j, m)
\end{aligned}
$$

marginal can be obtained from joint by summing out use Bayes' net joint distribution expression
use $x^{*}(y+z)=x y+x z$
joining on a, and then summing out gives f_{1}
use $x^{*}(y+z)=x y+x z$
joining on e, and then summing out gives f_{2}

Another Variable Elimination Example

$$
\text { Query: } P\left(X_{3} \mid Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)
$$

Start by inserting evidence, which gives the following initial factors:

$$
p(Z) p\left(X_{1} \mid Z\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{1} \mid X_{1}\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)
$$

Eliminate X_{1}, this introduces the factor $f_{1}\left(Z, y_{1}\right)=\sum_{x_{1}} p\left(x_{1} \mid Z\right) p\left(y_{1} \mid x_{1}\right)$, and we are left with:

$$
p(Z) f_{1}\left(Z, y_{1}\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)
$$

Eliminate X_{2}, this introduces the factor $f_{2}\left(Z, y_{2}\right)=\sum_{x_{2}} p\left(x_{2} \mid Z\right) p\left(y_{2} \mid x_{2}\right)$, and we are left with:

$$
p(Z) f_{1}\left(Z, y_{1}\right) f_{2}\left(Z, y_{2}\right) p\left(X_{3} \mid Z\right) p\left(y_{3} \mid X_{3}\right)
$$

Eliminate Z, this introduces the factor $f_{3}\left(y_{1}, y_{2}, X_{3}\right)=\sum_{z} p(z) f_{1}\left(z, y_{1}\right) f_{2}\left(z, y_{2}\right) p\left(X_{3} \mid z\right)$, and we are left:

$$
p\left(y_{3} \mid X_{3}\right), f_{3}\left(y_{1}, y_{2}, X_{3}\right)
$$

No hidden variables left. Join the remaining factors to get:

$$
f_{4}\left(y_{1}, y_{2}, y_{3}, X_{3}\right)=P\left(y_{3} \mid X_{3}\right) f_{3}\left(y_{1}, y_{2}, X_{3}\right) .
$$

Normalizing over X_{3} gives $P\left(X_{3} \mid y_{1}, y_{2}, y_{3}\right)$

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable $(Z, Z$, and X_{3} respectively).

Variable Elimination Ordering

- For the query $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ work through the following two different orderings as done in previous slide: $Z, X_{1}, \ldots, X_{n-1}$ and $X_{1}, \ldots, X_{n-1}, Z$. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2^{n+1} versus 2^{2} (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
- E.g., previous slide's example 2^{n} vs. 2
- Does there always exist an ordering that only results in small factors?
- No!

Worst Case Complexity?

- CSP:
$\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{2} \vee x_{5} \vee x_{7}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6} \vee \neg x_{7}\right) \wedge\left(\neg x_{5} \vee \neg x_{6} \vee x_{7}\right)$

$$
\begin{aligned}
& P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=0.5 \\
& Y_{1}=X_{1} \vee X_{2} \vee \neg X_{3} \\
& \cdots \\
& Y_{8}=\neg X_{5} \vee X_{6} \vee X_{7} \\
& Y_{1,2}=Y_{1} \wedge Y_{2} \\
& Y_{7,8}=Y_{7} \wedge Y_{8} \\
& Y_{1,2,3,4}=Y_{1,2} \wedge Y_{3,4} \\
& Y_{5,6,7,8}=Y_{5,6} \wedge Y_{7,8} \\
& Z=Y_{1,2,3,4} \wedge Y_{5,6,7,8}
\end{aligned}
$$

- If we can answer $\mathrm{P}(\mathrm{z})$ equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
- Try it!!
- Cut-set conditioning for Bayes' net inference
- Choose set of variables such that if removed only a polytree remains
- Exercise: Think about how the specifics would work out!

Bayes' Nets

- Representation

Conditional Independences

- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)

- Inference is NP-complete
- Sampling (approximate)

- Learning Bayes' Nets from Data

