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Bayes Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents values

= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
=1




Example: Alarm Network

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a S 0.1
-a +j 0.05
-a s 0.95

Burglary @

A M | P(M]|A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)
+e | 0.002

-e | 0.998

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
b | +e | +a 0.29
b | +e | -a 0.71
-b e | +a 0.001
-b -e -a 0.999
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Example: Alarm Network

B P(B) E P(E)

+b | 0.001 +e | 0.002

-b | 0.999 -e | 0.998
A J P(J|A) o A M | P(M|A)
s | 4 0.9 o | +m 0.7 B E A P(A|B,E)
v | 4 0.1 va | -m 03 +b | +e | +a 0.95
a | 4 | 005 Sl | oot +th | +e | -a 0.05
a | 4 | 095 a | -m | 099 th|e|*ta) 054

tb | -e | -a 0.06

+e | +a 0.29

b
P( | ba e, +a, _jv _I_m) — b |+ | -a 0.71
P(+b)P(—e)P(+a| + b, —e)P(—j| + a)P(+m| +a) = | b | = |+ | o001
0.001 % 0.998 x 0.94 x 0.1 x 0.7 blelal OO




Bayes’ Nets

& Representation
« Conditional Independences

= Probabilistic Inference

= Enumeration (exact, exponential complexity)

Variable elimination (exact, worst-case exponential
complexity, often better)

= |nference is NP-complete

= Sampling (approximate)

" Learning Bayes’ Nets from Data



Inference

" |nference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

P(Q|E1 =e1,... B, = ¢y)

= Most likely explanation:

argmax, P(Q =q|E1 =e7...)

NE &2 N




Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
» Evidence variables: FEi1...Ep=e1...¢€; X1, Xo,... Xn variables, too
= Query* variable: Q , P(Q|€1 e )
All variables - Ck

= Hidden variables: Hy...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1
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0.05 —
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—— Z=ZP(Q,€1'”€;C)
P(Q,e1...e;) = Z P(Qahlu-hrael---%) 4

Bk 1
1 X1,X;..Xn P(Q\el“‘ek):EP(Qael“'ek)



Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:
P(B | +j,+m) xB P(B,+j,+m) o
—ZP (B,e,a,+j,+m)
= ZP P(a|B,e)P(+j|a)P(+mla)

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B,—e)P(+j| — a)P(+m| — a)



Inference by Enumeration?

P(Antilock|observed variables) = 7



Inference by Enumeration vs. Variable Elimination

= Why isinference by enumeration so slow? = Idea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration

=" First we'll need some new notation: factors



Factor Zoo
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Factor Zoo |

P(T, W)
= Joint distribution: P(X,Y) " W P
* Entries P(x,y) forall x, y hot sun | 0.4
"= Sumstol hot rain | 0.1
cold sun 0.2
cold rain | 0.3
= Selected joint: P(x,Y)
= Aslice of the joint distribution P(cold, W)
= Entries P(x,y) for fixed x, all y T W P
= Sums to P(x) cold sun | 0.2
cold rain | 0.3
= Number of capitals =

dimensionality of the table




Factor Zoo |l

= Single conditional: P(Y | x)

P(W |cold)
» Entries P(y | x) for fixed x, all
T W P
= Sumstol
cold sun 0.4
cold rain 0.6
P(W|T)
= Family of conditionals: T W Al
hot sun 0.8
PIXIY) = —— - P(W|hot)
= Multiple conditionals ° rain | B2 )]
= Entries P(x | y) forall x, y cold sun_ 1 04 1| P(W|cold)
= Sumsto |Y| cold rain 0.6




Factor Zoo Il

= Specified family: P(y | X)
= Entries P(y | x) for fixed vy,
but for all x
= Sums to ... who knows!

P(rain|T')

T W | P
hot rain | 0.2 J» P(rain|hot)

cold | rain | 06 |+ P(rain|cold)




Factor Zoo Summary

" |n general, when we write P(Y; ... Yy | X; ... Xy)

= |tisa “factor,” a multi-dimensional array

" |tsvaluesare P(y; ... yy | X{ - Xp)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array




= Random Variables
= R: Raining

Example: Traffic Domain

= T: Traffic

= |: Late for class!

P(R)

+r 0.1

-r 0.9

P(T|R)

+r +t

0.8

+r -t

0.2

T | +

0.1

| -t

0.9

P(L|T)

+t +

0.3

+t -|

0.7

-t +|

0.1

-t -l

0.9




Inference by Enumeration: Procedural Outline

gﬂ

J—

= Track objects called factors

= |nitial factors are local CPTs (one per node) @‘g\j
P(R) P(T|R) P(L|T) E{ﬁ
e B

-r -t | 0.9 - -l 0.9

= Any known values are selected

= E.g. if we know L = -/, the initial factors are

P(R) P(TIR)  P(44|T)
+r 0.1 +r | + | 0.8 +t + 0.3
-r 0.9 +r -t [ 0.2 -t + 0.1

-r +# | 0.1
-r -t | 09

= Procedure: Join all factors, then eliminate all hidden variables



Operation 1: Join Factors

= First basic operation: joining factors

=  Combining factors:
= Just like a database join % —1
= Get all factors over the joining variable

» Build a new factor over the union of the variables
involved

= Example:JoinonR

R P(R) x P(T|R) =——> P(R,T)

+r 0.1 +r | +t | 0.8 +r | +t | 0.08

-r 0.9 +r | -t (0.2 +r | -t | 0.02

6 o |+t |01 -+ | +t | 0.09
-r| -t 0.9 -r | -t | 0.81

= Computation for each entry: pointwise products V?“, . P(T, t) — P(T) . P(t|7”)




Example: Multiple Joins

-
N -




Example: Multiple Joins f.».

B -

+r | 0.1

+r | +t | 0.08
P(T|R) — [ t]ow >
+r | +t |0.8 -r |+t 0.09
T oo |+t o081 R, T P(R,T,L)
|+ ]0.1 +r | +t | + | 0.024
-r| -t 0.9 @ +r +t -1 | 0.056

+r -t + | 0.002

P(L|T) P(L|T) +r -t -l 0.018
+ | +l 0.3 +t | +l 0.3 -r +t + | 0.027
+ | -l |0.7 +t | -l [0.7 -r +t | 0.063
-t |+ 0.1 -t | + |0.1 r -t + | 0.081
-t |-l (0.9 -t |-l (0.9 -r -t | 0.729




Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable
» Shrinks a factor to a smaller one

= A projection operation

= Example:
P(R,T)
+r | +t | 0.08 sum R P(T)

+r | -t | 0.02 |:> +t

-r | +t | 0.09 -1
-r | -t | 0.81




P(R,T,L)

Multiple Elimination

Q>

+r

+t

+

+r

+t

+r

-1

+

+r

-1

+t

+|

+t

-1

+|

1 1 1 1
- - - -

-

Sum

out R

P(T, L)

0.051

0.119

0.083

0.747

Sum
outT

L

P(L)

+ 10.134

-l 10.886




Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

(




Marginalizing Early (= Variable Elimination)




Traffic Domain

(R) P(L)="7

6 " Inference by Enumeration " Variable Elimination

D =SS (LIt P P(H) =) P(L|t) y_ P(r)P(tlr)
t T \ ) t r |\ i
Joinonr Joinonr
\ y ) L Y J
Joinont Eliminate r
T ) 0 J
Eliminate r Join (')n t
T ' | | ]

|
Eliminate t Eliminate t



P(R)

+r | 0.1

-r 0.9

P(T|R)

+r | +t [0.8

+r | -t |0.2

-r | +t |0.1

-r | -t |10.9

P(L|T)

+t | +l |0.3

+ | -l [0.7

-t | +l |0.1

-t | -1 0.9

Join R

—>

Marginalizing Early! (aka VE)

P(R,T)

+r

+t

0.08

+r

-t

0.02

-

+t

0.09

-r

-t

0.81

R, T

®

P(L|T)

+t

+|

0.3

+t

0.7

+|

0.1

0.9

Sum out R

—>

P(T)

+t

0.17

-t

0.83

P(L|T)

+t

+|

0.3

+t

0.7

+|

0.1

0.9

JoinT

—>

Sumout T

Q>

P(T,L)

—>

+t

+

0.051

+t

0.119

+|

0.083

0.747

L

P(L)

+

0.134

0.866




Evidence

= |f evidence, start with factors that select that evidence

= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r + | 0.8 +t + 0.3
-r 0.9 +r t | 0.2 +t -l 0.7

-r +# | 0.1 -t + 0.1
-r -t | 0.9 -t -| 0.9

= Computing P(L| + r)the initial factors become:

P(+r) P(T|+7)  P(LIT)

. +t + 0.3

+r -t | 0.2 +t -| 0.7
-t + 0.1

-t -| 0.9

= We eliminate all vars other than query + evidence



Evidence |l

= Result will be a selected joint of query and evidence
= E.g. for P(L | +r), we would end up with:

P(""’"a L) Normalize P(L +T)

+r | +l | 0.026 :E + | 0.26
+r | -l | 0.074 -l |1 0.74

" To get our answer, just normalize this!

* That’sit!




General Variable Elimination

Query: P(Q|E1 = e1,... B = ey)

Start with initial factors:
= Local CPTs (but instantiated by evidence)

While there are still hidden variables
(not Q or evidence):

= Pick a hidden variable H

= Join all factors mentioning H

= Eliminate (sum out) H

Join all remaining factors and normalize
(- X



Example

P(B|j,m) « P(B,j,m)

P(B) P(E) P(A|B, E) P lA)  P(mlA)
Choose A
P(A|B, F)
P(jlA) X > P(j,m,A|B,E) |¥ ) P(j,m|B,E)
P(m|A)

P(B)

P(E) P(j,m|B, E)




Example

P(B) P(E) P(j,m|B, )
Choose E
PLE) :><> P(j,m, E|B) :z > P(j,m|B)
P(j,m|B, E)
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X P(j,m,B) Normalize > P(B‘j, WL)



Same Example in Equations

P(B|j,m) « P(B,j,m)

P(B) P(E) P(A|B, E) P(jlA)  P(m|A)

P(Blj,m) = P(B,j,m)
— ZP(B,j,m,e,&)
e,a

= Y P(B)P(e)P(a|B,e)P(jla)P(m|a)
= Y P(B)P(e)>_ P(a|B,e)P(jla)P(m|a)
= Y P(B)P(e)f1(B,e,j,m)

= P(B))_ P(e)fi(B,e,j,m)

marginal can be obtained from joint by summing out
use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f,

use x*(y+z) =xy + xz

joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Another Variable Elimination Example

Query: P(X3|Y1 =y1,Y2 = y2,Y3 = y3)
Start by inserting evidence, which gives the following initial factors:
p(Z)p(X1|Z2)p(X2|Z)p(X3| Z)p(y1| X1)p(y2| X2)p(ys]| Xs)

Eliminate X1, this introduces the factor fi(Z,y1) = >, p(21]|Z)p(y1|z1), and
we are left with:

p(2) f1(Z,y1)p(X2| Z)p(X3| Z)p(y2| X2)p(ys]| X3)

Eliminate X, this introduces the factor fa(Z,y2) = >_,, p(72|Z)p(y2|r2), and
we are left with:

P(2)f1(Z,y1) f2(Z, y2)p(X35]| Z)p(y3| X3)

Eliminate Z, this introduces the factor f3(y1,y2, X3) = >, p(2) f1(2,11) f2(2,y2)p(X35|2),
and we are left:

p(ys|Xs), fs(y1,y2, X3)

No hidden variables left. Join the remaining factors to get:

fa(y1,y2,y3, X3) = P(ys| X3) fa(y1, y2, X3).

Normalizing over X3 gives P(Xs|y1,y2,Y3).

Computational complexity critically
depends on the largest factor being
generated in this process. Size of factor
= number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as
they all only have one variable (Z, Z,
and X, respectively).



Variable Elimination Ordering

" Forthe query P(X,|yy,...,Y,) work through the following two different orderings

as done in previous slide: Z, X,, ..., X, and X, ..., X, 1, Z. What is the size of the

maximum factor generated for each of the orderings?

= Answer: 2" versus 22 (assuming binary)

= |n general: the ordering can greatly affect efficiency.



VE: Computational and Space Complexity

» The computational and space complexity of variable elimination is
determined by the largest factor

* The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2" vs. 2

" Does there always exist an ordering that only results in small factors?
= No!



Worst Case Complexity?

= CSP:
(3}'1 Vl‘g V_ng)/\(_l$1\f$3\/_|$4)/\(:,132\/_'.’.!’,'2\/35'4)/\(_I$3V_|$4V_l3’,'5)/\(372\/3','5\/:137)/\(234\/535\/336)/\(_I.’L‘5Vﬂ?ﬁ\/—lﬂ??)/\(_lﬂig,v_liﬁﬁvx?)

P(X;=0)=P(X;=1) = 0.5
Vi =XV XoV-X;

Yy = =X5 V Xg V X5

YLQ =Y A Y5

Yo =Y AYg
Yiosa=Y12AY34
Ys678 =Ys56 /A Y7s

/= Y],g,;f,__4 N Kﬁ,ﬁﬁ?.-ﬁ

= |f we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.



Polytrees

= A polytree is a directed graph with no undirected cycles

" For poly-trees you can always find an ordering that is efficient
= Tryit!!

= Cut-set conditioning for Bayes’ net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!



Bayes’ Nets

& Representation
« Conditional Independences

= Probabilistic Inference

J Enumeration (exact, exponential
complexity)

J Variable elimination (exact, worst-case
exponential complexity, often better)

J Inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data



