CSCl 446: Artificial Intelligence

Constraint Satisfaction Problems I

Instructor: Michele Van Dyne

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to’Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

= Efficient Solution of CSPs

= | ocal Search

Reminder: CSPs

= (CSPs:
= Variables @
= Domains
= Constraints @ @

= |mplicit (provide code to compute)

= Explicit (provide a list of the legal tuples)
= Unary/ Binary / N-ary

" Goals:

= Here: find any solution
= Also: find all, find best, etc.

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

Improving Backtracking

General-purpose ideas give huge gains in speed
= .. butit’s all still NP-hard

Filtering: Can we detect inevitable failure early?

Ordering:
= Which variable should be assigned next? (MRV)
= |n what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are simultaneously consistent:

WA NT Q NSW \'

SA

NT
Q
‘ =]| =] [H E[EEE] H]

5 — ~——

= Arc consistency detects failure earlier than forward checking
" |mportant: If X loses a value, neighbors of X need to be rechecked!
= Must rerun after each assignment!

Remember: Delete
from the tail!

Limitations of Arc Consistency

= After enforcing arc ‘:’
consistency: ‘

= Can have one solution left

= Can have multiple solutions left

= Can have no solutions left (and @
not know it) ‘

" Arc consistency still runs What went
insi i here?
inside a backtracking search! wrong here

K-Consistency

K-Consistency

" |ncreasing degrees of consistency

= 1-Consistency (Node Consistency): Each single node’s domain has a Q
value which meets that node’s unary constraints

= 2-Consistency (Arc Consistency): For each pair of nodes, any Q =) O
consistent assignment to one can be extended to the other

= K-Consistency: For each k nodes, any consistent assignment to k-1 @
can be extended to the k" node.

= Higher k more expensive to compute

"= (You need to know the k=2 case: arc consistency) CID

Strong K-Consistency

Strong k-consistency: also k-1, k-2, ... 1 consistent

Claim: strong n-consistency means we can solve without backtracking!

Why?
= Choose any assignment to any variable
= Choose a new variable
= By 2-consistency, there is a choice consistent with the first
= Choose a new variable
= By 3-consistency, there is a choice consistent with the first 2

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Problem Structure

Extreme case: independent subproblems
= Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:

= Worst-case solution cost is O((n/c)(d¢)), linear in n

= E.g,n=80,d=2,c=20

= 280 =4 billion years at 10 million nodes/sec

= (4)(2%°) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

A E)
(80
© F)

» Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
= Compare to general CSPs, where worst-case time is O(d")

= This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

2

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X,),X.)
= Assign forward: Fori=1:n, assign X, consistently with Parent(X))

= Runtime: O(n d?) (why?)

Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

@‘@"’ C
g O
® ®

= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

= Cutset size c gives runtime O((d°) (n-c) d?), very fast for small c

Cutset Conditioning

o 1R

Choose a cutset

i
/

3‘@‘6
it
SN

[]

Instantiate the cutset /
[(all possible ways) J @‘ﬁ"@
[]
[]

e

&—© ®

Compute residual CSP O
for each assignment l l l
O O O
Solve the residual CSPs (1) () ()
(tree structured) (=) () (1)
O O O

Cutset Quiz

" Find the smallest cutset for the graph below.

Tree Decomposition™

= |dea: create a tree-structured graph of mega-variables
= Each mega-variable encodes part of the original CSP
= Subproblems overlap to ensure consistent solutions @

sren paleys | uo 2aiby
sren paleys | uo aaiby
sren paleys | uo aaiby

{(WA=1,SA=g,NT=b), {(NT=r,SA=g,Q=b), Agree: (M1,M2) e
(V\;A:b,SAﬂ,NT:g), (N;:b’SAZQ’er)’ {((wA=g,SA=g,NT=g), (NT=g,SA=g,Q=0)), ...}

Iterative Improvement

Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

" To apply to CSPs:

= Take an assignment with unsatisfied constraints
= QOperators reassign variable values
= No fringe! Live on the edge.

0 00

= Algorithm: While not solved,

= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:

= Choose a value that violates the fewest constraints

= |.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

" Goal test: no attacks

Evaluation: c(n) = number of attacks

[Demo: n-queens — iterative improvement (L5D1)]
[Demo: coloring — iterative improvement]

Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

= The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

R number of constraints
number of variables

DS

|
critical
ratio

CPU
time

Summary: CSPs

= CSPs are a special kind of search problem:
= States are partial assignments
" Goal test defined by constrai

= Basic solution: backtracking sea

= Speed-ups:

= Ordering
= Filtering
= Structure

" |terative min-conflicts is often effective in practice

Local Search

Local Search

= Tree search keeps unexplored alternatives on the fringe (ensures completeness)
" Local search: improve a single option until you can’t make it better (no fringe!)

= New successor function: local changes

O

1999

= Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

= Simple, general idea:
= Start wherever
= Repeat: move to the best neighboring state
= |f no neighbors better than current, quit

= What'’s bad about this approach?

= Complete?
= Optimal?

= What’s good about it?

Hill Climbing Diagram

objective function qlobal maximum

shoulder

\ local maximum

"flat" local maximum

state space
curren

state

Hill Climbing Quiz

Objective Function
F

State Space

Starting from X, where do you end up ?
Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

" |dea: Escape local maxima by allowing downhill moves

= But make them rarer as time goes on

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
1" a “temperature’ controlling prob. of downward steps
1

current +— MAKE-NODE(INITIAL-STATE[problem])
for t+— 1 to oc do
T'— schedule[{]
if 7= 0 then return current
next «—a randomly selected successor of current
AFE+«— VALUE[next] = VALUE[current]
if AE > 0 then current «— next

. iy / {
else current — next only with probability e® /T

Simulated Annealing

" Theoretical guarantee: B(2)
= Stationary distribution: p(x) o e kT

= |f T decreased slowly enough,
will converge to optimal state!

" |s this an interesting guarantee?

= Sounds like magic, but reality is reality:

= The more downhill steps you need to escape a local
optimum, the less likely you are to ever make them all in a
row

= People think hard about ridge operators which let you
jump around the space in better ways

Genetic Algorithms

24748552 | 24 31% _| 32752411 >_< 32748552 32748052

32752411 [23 29% | 24748552 24752411 24752411

24415124 | 20 26% ~| 32752411 >_< 32752124 32252124

32543213 | 11 14% ~| 24415124 24415411 }244154
Fithess Selection Pairs Cross—-Over

" Genetic algorithms use a natural selection metaphor
= Keep best N hypotheses at each step (selection) based on a fitness function
= Also have pairwise crossover operators, with optional mutation to give variety

= Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

ny does crossover make sense here?
nen wouldn’t it make sense?

nat would mutation be?

hat would a good fitness function be?

Today

= Efficient Solution of CSPs

= | ocal Search

