
CSCI 446: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Michele Van Dyne

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

 Constraint Satisfaction Problems (CSPs)

 Using Search in CSPs

 Improving CSP Solutions

 Backtracking

 Filtering

 Arc Consistency

What is Search For?

 Assumptions about the world: a single agent, deterministic actions, fully observed
state, discrete state space

 Planning: sequences of actions
 The path to the goal is the important thing

 Paths have various costs, depths

 Heuristics give problem-specific guidance

 Identification: assignments to variables
 The goal itself is important, not the path

 All paths at the same depth (for some formulations)

 CSPs are specialized for identification problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

 Standard search problems:
 State is a “black box”: arbitrary data structure
 Goal test can be any function over states
 Successor function can also be anything

 Constraint satisfaction problems (CSPs):
 A special subset of search problems

 State is defined by variables Xi with values from a
domain D (sometimes D depends on i)

 Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

 Simple example of a formal representation language

 Allows useful general-purpose algorithms with more

power than standard search algorithms

CSP Examples

Example: Map Coloring

 Variables:

 Domains:

 Constraints: adjacent regions must have different
colors

 Solutions are assignments satisfying all
constraints, e.g.:

Implicit:

Explicit:

Example: N-Queens

 Formulation 1:

 Variables:

 Domains:

 Constraints

Example: N-Queens

 Formulation 2:

 Variables:

 Domains:

 Constraints:

Implicit:

Explicit:

Constraint Graphs

Constraint Graphs

 Binary CSP: each constraint relates (at most) two
variables

 Binary constraint graph: nodes are variables, arcs
show constraints

 General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Screenshot of Demo N-Queens

Example: Cryptarithmetic

 Variables:

 Domains:

 Constraints:

Example: Sudoku

 Variables:

 Each (open) square

 Domains:

 {1,2,…,9}

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

Example: The Waltz Algorithm

 The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

 An early example of an AI computation
posed as a CSP

 Approach:

 Each intersection is a variable
 Adjacent intersections impose constraints

on each other
 Solutions are physically realizable 3D

interpretations

?

Varieties of CSPs and Constraints

Varieties of CSPs

 Discrete Variables
 Finite domains

 Size d means O(dn) complete assignments

 E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

 Infinite domains (integers, strings, etc.)

 E.g., job scheduling, variables are start/end times for each job

 Linear constraints solvable, nonlinear undecidable

 Continuous variables
 E.g., start/end times for Hubble Telescope observations

 Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

 Varieties of Constraints
 Unary constraints involve a single variable (equivalent to

reducing domains), e.g.:

 Binary constraints involve pairs of variables, e.g.:

 Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

 Preferences (soft constraints):

 E.g., red is better than green
 Often representable by a cost for each variable assignment
 Gives constrained optimization problems
 (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

 Scheduling problems: e.g., when can we all meet?

 Timetabling problems: e.g., which class is offered when and where?

 Assignment problems: e.g., who teaches what class

 Hardware configuration

 Transportation scheduling

 Factory scheduling

 Circuit layout

 Fault diagnosis

 … lots more!

 Many real-world problems involve real-valued variables…

Solving CSPs

Standard Search Formulation

 Standard search formulation of CSPs

 States defined by the values assigned
so far (partial assignments)
 Initial state: the empty assignment, {}
 Successor function: assign a value to an

unassigned variable
 Goal test: the current assignment is

complete and satisfies all constraints

 We’ll start with the straightforward,

naïve approach, then improve it

Search Methods

 What would BFS do?

 What would DFS do?

 What problems does naïve search have?

[Demo: coloring -- dfs]

Backtracking Search

Backtracking Search

 Backtracking search is the basic uninformed algorithm for solving CSPs

 Idea 1: One variable at a time
 Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 Only need to consider assignments to a single variable at each step

 Idea 2: Check constraints as you go
 I.e. consider only values which do not conflict previous assignments
 Might have to do some computation to check the constraints
 “Incremental goal test”

 Depth-first search with these two improvements
 is called backtracking search (not the best name)

 Can solve n-queens for n 25

Backtracking Example

Backtracking Search

 Backtracking = DFS + variable-ordering + fail-on-violation

 What are the choice points?

[Demo: coloring -- backtracking]

Improving Backtracking

 General-purpose ideas give huge gains in speed

 Ordering:

 Which variable should be assigned next?

 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?

 Structure: Can we exploit the problem structure?

Filtering

 Filtering: Keep track of domains for unassigned variables and cross off bad options

 Forward checking: Cross off values that violate a constraint when added to the existing
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

 Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
 Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V

Consistency of A Single Arc

 An arc X Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

 Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V

Arc Consistency of an Entire CSP

 A simple form of propagation makes sure all arcs are consistent:

 Important: If X loses a value, neighbors of X need to be rechecked!
 Arc consistency detects failure earlier than forward checking
 Can be run as a preprocessor or after each assignment
 What’s the downside of enforcing arc consistency?

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

 After enforcing arc
consistency:

 Can have one solution left

 Can have multiple solutions left

 Can have no solutions left (and
not know it)

 Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- arc consistency]

[Demo: coloring -- forward checking]

Ordering

Ordering: Minimum Remaining Values

 Variable Ordering: Minimum remaining values (MRV):

 Choose the variable with the fewest legal left values in its domain

 Why min rather than max?

 Also called “most constrained variable”

 “Fail-fast” ordering

Ordering: Least Constraining Value

 Value Ordering: Least Constraining Value
 Given a choice of variable, choose the least

constraining value

 I.e., the one that rules out the fewest values in
the remaining variables

 Note that it may take some computation to
determine this! (E.g., rerunning filtering)

 Why least rather than most?

 Combining these ordering ideas makes
 1000 queens feasible

Today

 Constraint Satisfaction Problems (CSPs)

 Using Search in CSPs

 Improving CSP Solutions

 Backtracking

 Filtering

 Arc Consistency

