
Software Testing

Outline

 Software
Quality

 Unit Testing

 Integration
Testing

 Acceptance
Testing

“Quality” is Hard to Pin Down

 Concise, clear definition is elusive

 Not easily quantifiable

 Many things to many people

 “You'll know it when you see it”

Good Quality Software Has…

 Understandability

 The ability of a reader of the software to understand its
function

 Critical for maintenance

 Modifiability

 The ability of the software to be changed by that reader

 Almost defines "maintainability"

Good Quality Software Has…

 Reliability

 The ability of the software to perform as intended without
failure

 If it isn't reliable, the maintainer must fix it

 Efficiency

 The ability of the software to operate with minimal use of time
and space resources

 If it isn't efficient, the maintainer must improve it

Good Quality Software Has…

 Testability
 The ability of the software to be tested easily

 Finding/fixing bugs is part of maintenance

 Enhancements/additions must also be tested

 Usability
 The ability of the software to be easily used (human factors)

 Not easily used implies more support calls, enhancements,
corrections

Good Quality Software Has…

 Portability

 The ease with which the software can be made useful in
another environment

 Porting is usually done by the maintainer

Notice all related to maintenance but these qualities
need to be instilled during development

Why Test?

 No matter how well software has been designed and
coded, it will inevitably still contain defects

 Testing is the process of executing a program with the
intent of finding faults (bugs)

 A “successful” test is one that finds errors, not one
that doesn’t find errors

Why Test?

 Testing can “prove” the presence of faults, but can
not “prove” their absence

 But can increase confidence that a program “works”

What to Test?

 Unit test – test of small code unit: file, class,
individual method or subroutine

 Integration test – test of several units combined
to form a (sub)system, preferably adding one unit
at a time

 System (alpha) test – test of a system release by
“independent” system testers

 Acceptance (beta) test – test of a release by
end-users or their representatives

When to Test?

Early
 “Agile programming” developers write unit test cases

before coding each unit
 Many software processes involve writing (at least)

system/acceptance tests in parallel with development

Often
 Regression testing: rerun unit, integration and

system/acceptance tests
 After refactoring
 Throughout integration
 Before each release

Defining a Test

 Goal – the aspect of the system being tested

 Input – specify the actions and conditions that lead
up to the test as well as the input (state of the world,
not just parameters) that actually constitutes the test

 Outcome – specify how the system should respond
or what it should compute, according to its
requirements

Test Harness (Scaffolding)

 Driver - supporting code and data used to
provide an environment for invoking part of a
system in isolation

 Stub - dummy procedure, module or unit that
stands in for another portion of a system, intended
to be invoked by that isolated part of the system
 May consist of nothing more than a function header with no

body

 If a stub needs to return values, it may read and return test
data from a file, return hard-coded values, or obtain data from
a user (the tester) and return it

Unit Testing

Unit Testing Overview

 Unit testing is testing some program unit in isolation
from the rest of the system

 Usually the programmer is responsible for testing a
unit during its implementation

 Easier to debug when a test finds a bug (compared to
full-system testing)

Unit Testing Strategies

 Black box (specification-based) testing

 White box (program-based) testing, aka glass-box

 Normally perform both (not alternatives!)

White Box Testing

 Test suite constructed by inspecting the program
(code)

 Look at specification (requirements, design, etc.)
only to determine what is an error

 Attempt to exercise all statements, all branches,
or all paths (control flow and/or data flow)

 Intuition: If you never tested that part of the
code, how can you have any reason to believe that
it works?

Whitebox Approaches
to Unit Testing

1. Execute all (reachable) statements

2. Execute all branches of logical decisions, including
boundaries of loops

3. Execute all (feasible) control flow paths in
combination

4. Execute all data flow paths (from each variable
definition to all its uses)

 Usually applied only to individual subroutines
rather than larger unit (due to combinatorics)

Example

 Consider a function that takes as input a string
assumed to be a URL and checks to see if it
contains any characters that are illegal

 Illegal URL characters are control characters (ascii
0-31, 127), space (ascii 32), and delimiter
characters (">", "<", "#", "%", and the double quote
character)

 The function returns true if the URL is valid (does
not contain an illegal character), and false if the
URL is invalid (contains an illegal character)

def isLegalURL (url):
 valid = True
 i = 0
 while i < len(url) and valid:
 c = url[i]
 if ord(c) >= 0 and ord(c) <= 32:
 valid = False
 else:
 if c == '>' or c == '<' or
 c == '#' or c == '%' or c == '\\':

 valid = False
 i += 1
 return valid

Black Box Testing

 Test suite constructed by inspecting the specification
(requirements, design, etc.), not the source code

 Tests unit against functional and, sometimes, extra-
functional specifications (e.g., resource utilization,
performance, security)

 Attempts to force behavior (outcome) that doesn't
match specification

Blackbox Approaches to
Unit Testing

 Functional testing – exercise code with valid or nearly
valid input for which the expected outcome is known
(outcome includes global state and exceptions as well
as output)

 Exhaustive testing usually infeasible, so need way(s) to
select test cases and determine when “done” testing

 Choose test cases to attempt to find different faults
 Equivalence partitioning

 Boundary value analysis

Equivalence Partitioning

 Assume similar inputs will evoke similar responses

 Equivalence class is a related set of valid or invalid values or
states
 Valid inputs
 Invalid inputs
 Errors, exceptions, and events
 Boundary conditions
 Everything that could possibly break!

 Only one or a few examples are selected to represent an entire

equivalence class

 Good for basic functionality testing

Equivalence Partitioning

 Divide input domain into equivalence classes

 Divide outcome domain into equivalence classes

Need to determine inputs to cover each
output equivalence class

Also attempt to cover classes of errors,
exceptions and external state changes

Boundary Value Analysis

 Consider input values that are “between” different
expectations of functionality

 Sometimes called “corner cases”

 Programmers tend to make common errors

 Off-by-one

 “<” instead of “<=”

Example

 A student must be registered for at least 12 points to
be considered full-time

Full-time: some number 12 or greater

Not full-time: some number less than 12

 The method isFullTime takes an int and returns a

boolean

 What inputs should we use to test it?

Another Example

 The function stringSqrRoot takes a String as

input, converts it to a number, and returns that
number’s square root

 It throws an exception if the String is not numeric

 What inputs should we use to test it?

Automated Testing

Testing by hand is tedious, slow, error-
prone and not fun

Computers are much less easily bored
than people

So write code to test your code!

Automated Testing

 Write code to set up the unit, call its methods with
test inputs, and compare the results to the known
correct answers

 Once tests are written, they are easy to run, so you
are much more likely to run them

 Python library, unittest is a commonly used tool for
testing

Unit Testing Summary

 Unit testing is testing some program unit in isolation
from the rest of the system

 Usually the programmer is responsible for testing a
unit during its implementation

 Strategies:
 Black box (specification-based) testing

 White box (program-based) testing

 Normally perform both (not alternatives!)

unittest

import unittest
from TestMe import isLegalURL

class URLTestCase(unittest.TestCase):

 def test_valid(self):
 self.assertTrue(isLegalURL('cs.mtech.edu'))

 def test_space(self):
 self.assertFalse(isLegalURL('cs.m tech.edu'))

… and a whole bunch of other tests in here…

 def test_quote(self):
 valid = isLegalURL('cs.mtech"edu')
 self.assertEqual(valid, False)

 def test_valid2(self):
 valid = isLegalURL('www.google.com')
 self.assertEqual(valid, True)

if __name__ == '__main__':
 unittest.main()

Integration Testing

Integration Testing

 Performed after all units to be integrated have
passed all black box unit tests

 Reuse unit test cases that cross unit boundaries (that
previously required stub(s) and/or driver standing in
for another unit)

 White box testing might be combined with
integration as well as unit testing (tracking coverage)

Example: Two Units

readFile

getCharacterFreq String

String[] String

Frequency[]

Example: Integration Testing

readFile

getCharacterFreq String

String[] String

Frequency[]

for each

System/Acceptance Testing

System/Acceptance Testing

 Also known as user testing

 All units in the system are combined into the final
program/application

 Ensure that the system works the way that the user
expects, i.e. that it meets the user specifications for
functionality

System/Acceptance Testing

 Usually difficult to automatically mimic users’ input
(keyboard, GUI, etc.)

 Requires human users to try different input:

 Valid vs. invalid actions

 Various sequences of actions

 Unanticipated actions

Summary

 Software Quality

 Unit Testing

 Integration Testing

 Acceptance Testing

