
EXCEPTIONS

Fundamentals of Computer Science I

Traceback (most recent call last):
 File "E:/CSCI 135 - CS I/Fall 2019/Examples/AddNums1.py", line 9, in <module>
 num2 = int(sys.argv[2])
ValueError: invalid literal for int() with base 10: '3.5'

Outline

• Exceptions

• An important part of writing defensive code

• Defending against bad input

• Handling unexpected events

• e.g. File is missing

• e.g. Trying to parse "$56.89" as a float

Adding Two Numbers

• Goal: Defend against all types of bad input

• Problem 1: Crashes if less than 2 arguments

3

import sys

num1 = int(sys.argv[1])
num2 = int(sys.argv[2])
sum = num1 + num2
print(str(num1) + " + " + str(num2) + " = " + str(sum))

% python AddNums1.py 1
Traceback (most recent call last):
 File "E:/CSCI 135 - CS I/Fall 2019/Examples/AddNums1.py", line 9, in <module>
 num2 = int(sys.argv[2])
IndexError: list index out of range

Adding Two Numbers
• Goal: Defend against all types of bad input

• Fix 1: Add conditional to check there are 2 args (plus the arg for the

program name)

• Problem 2: Crashes if passed a non-integer arg

4

import sys

if len(sys.argv) != 3:
 print("AddNums <integer 1> <integer 2>")
else:
 num1 = int(sys.argv[1])
 num2 = int(sys.argv[2])
 sum = num1 + num2
 print(str(num1) + " + " + str(num2) + " = " + str(sum))

% python AddNums2.py 2 3.5
Traceback (most recent call last):
 File "E:/CSCI 135 - CS I/Fall 2019/Examples/AddNums1.py", line 9, in <module>
 num2 = int(sys.argv[2])
ValueError: invalid literal for int() with base 10: '3.5'

Adding Two Numbers

• How to check for invalid input to int()?

• e.g. 1.0, 192.168.1.4, $1, 123., one

5

import sys

if len(sys.argv) != 3:
 print("AddNums <integer 1> <integer 2>")
else:
 num1 = int(sys.argv[1])
 num2 = int(sys.argv[2])
 sum = num1 + num2
 print(str(num1) + " + " + str(num2) + " = " + str(sum))

Python Exceptions

• When things go wrong:

• Python raises an exception

• You get to decide if program can recover or not

• Rather than always crashing with a runtime error

6

% python AddNums2.py 2 3.5
Traceback (most recent call last):
 File "E:/CSCI 135 - CS I/Fall 2019/Examples/AddNums1.py", line 9, in <module>
 num2 = int(sys.argv[2])
ValueError: invalid literal for int() with base 10: '3.5'

try-except Block

7

try:
 # Do some risky things

 # Do some more risky things
except <ErrorNameHere>:
 # Try and recover from the problem

If something goes horribly

wrong on a line in the try

block, flow of control

immediately jumps to the

except block.

Add Code to catch all Exceptions

8

import sys

try:
 num1 = int(sys.argv[1])
 num2 = int(sys.argv[2])
 sum = num1 + num2
 print(str(num1) + " + " + str(num2) + " = " + str(sum))
except BaseException:
 print("Something went wrong!")
print("End of program")

% python AddNums.py
Something went wrong!
End of program

% python AddNums.py 2 3.5
Something went wrong!
End of program

Not an ideal solution:

How is the user suppose to know what to do differently?

A Better Solution

9

import sys

if len(sys.argv) != 3:
 print("AddNums <integer 1> <integer 2>")
else:
 try:
 num1 = int(sys.argv[1])
 num2 = int(sys.argv[2])
 except ValueError:
 print("Something went wrong!")
 else:
 sum = num1 + num2
 print(str(num1) + " + " + str(num2) + " = " + str(sum))
print("End of program")

Principle 1:

Don't catch exceptions

you can handle with

logic such as staying in

bounds of an array.

Principle 2:

Catch exceptions

based on their type,

not just generically.

Else, the else Block

• Else block executes if no exception was raised

• If no exception, runs after try-block

• If exception occurs, does not run

10

try:
 turnOvenOn()
 x.bake()
except BakingException:
 # report an error
else:
 turnOvenOff()

Averaging Numbers

11

import sys

total = 0.0
count = 0

Check if we need to print out command line help
if len(sys.argv) < 2:
 print("AvgNumsFile <filename>")
else:
 try:
 # Open up the text file for reading
 with open(sys.argv[1], encoding='utf-8') as f:
 contents = f.read()
 except FileNotFoundError:
 print(f"Sorry, the file {sys.argv[1]} does not exist.")
 else:
 numbers = contents.split()
 for num in numbers:
 total += float(num)
 count += 1
 f.close()

 # Print out the final average
 if count != 0:
 print(total / count)
 else:
 print("Cannot divide by 0")

New program: reads from

filename given by

sys.argv[1].

% python AvgNumsFile1.py squares.txt
332833.5

Trying to Break it

12

import sys

total = 0.0
count = 0

Check if we need to print out command line help
if len(sys.argv) < 2:
 print("AvgNumsFile <filename>")
else:
 try:
 # Open up the text file for reading
 with open(sys.argv[1], encoding='utf-8') as f:
 contents = f.read()
 except FileNotFoundError:
 print(f"Sorry, the file {sys.argv[1]} does not exist.")
 else:
 numbers = contents.split()
 for num in numbers:
 total += float(num)
 count += 1
 f.close()

 # Print out the final average
 if count != 0:
 print(total / count)
 else:
 print("Cannot divide by 0")

% python AvgNumsFile1.py noexist.txt
Sorry, the file NoExist.txt does not exist.

% python AvgNumsFile1.py mobydick.txt
Traceback (most recent call last):
 File "E:/CSCI 135 - CS I/Fall 2019/Examples/AvgNumsFile1.py",
line 24, in <module>
 total += float(num)
ValueError: could not convert string to float: 'Loomings'

Multiple except Blocks

13

import sys

total = 0.0
count = 0

Check if we need to print out command line help
if len(sys.argv) < 2:
 print("AvgNumsFile <filename>")
else:
 try:
 # Open up the text file for reading
 with open(sys.argv[1], encoding='utf-8') as f:
 contents = f.read()
 numbers = contents.split()
 for num in numbers:
 total += float(num)
 count += 1
 f.close()
 except FileNotFoundError:
 print(f"Sorry, the file {sys.argv[1]} does not exist.")
 except ValueError:
 print("Invalid data in file!")
 else:

 # Print out the final average
 if count != 0:
 print(total / count)
 else:
 print("Cannot divide by 0")

% python AvgNumsFile2.py mobydick.txt
Invalid data in file!

Ignoring an Exception

14

import sys

total = 0.0
count = 0

Check if we need to print out command line help
if len(sys.argv) < 2:
 print("AvgNumsFile <filename>")
else:
 try:
 # Open up the text file for reading
 with open(sys.argv[1], encoding='utf-8') as f:
 contents = f.read()
 except FileNotFoundError:
 print(f"Sorry, the file {sys.argv[1]} does not exist.")
 else:
 numbers = contents.split()
 for num in numbers:
 try:
 total += float(num)
 except ValueError:
 pass
 else:
 #print(num)
 count += 1
 f.close()

 # Print out the final average
 if count != 0:
 print(total / count)
 else:
 print("Cannot divide by 0")

% python AvgNumsFile3.py TaleOfTwoCities.txt
799.5714285714286

User Defined Exceptions

class B(Exception):
 pass

class C(B):
 pass

class D(C):
 pass

for cls in [B, C, D]:
 try:
 raise cls()
 except D:
 print("D")
 except C:
 print("C")
 except B:
 print("B")

Raising Exceptions

• How do exceptions start their life?

• Somebody raises them:

• Whoever is using the method should catch (“try-except”)

• Or else that method can raise it

• What if nobody catches it?

• Causes compile error if exception is not caught

16

raise NoCaffeineException()

Python Exception Class Hierarchy

17

Finally, the finally Block

• Finally block executes no matter what

• If no exception, runs after try- or else-block

• If exception occurs, runs after except-block

• Useful for doing cleanup that is always needed

18

try
 turnOvenOn()
 x.bake()
except BakingException:
 print(“Baking didn’t work”)
finally:
 turnOvenOff()

Summary

• Exceptions

• An important part of writing defensive code

• Defending against bad input

• Handling unexpected events

• e.g. File is missing

• e.g. Trying to parse "$56.89" as a float

Try It!

• This is not really an extra credit activity, but what I want

you to do is download the examples from today along with

the text files. Particularly with the AvgNumsFile.java code,

try running it with both text files and see what happens.

You can even create your own text file with numbers in it

and use it on the command line instead. For example, you

could put the numbers:

1

2

3

• in a file and see if the program averages them out to 2.0

correctly.

