Object Oriented Design

Fundamentals of Computer Science

Outline

* Object Oriented Design
o Identify the Classes
o Identify what Information each Class Needs
o Identify what each Class Needs to Do

Pl > &2

Understand the Problem = Requirements
Analysis

Work out the Logic = Design
Convert it to Code = Implementation
Test/Debug

Maintenance

Today we will talk about requirements
analysis and object oriented design.

You have been hired to automate bank operations
for a local credit union. They have told you that
their business operates as follows:

Customers can open accounts. They can make deposits and
withdrawals and can close accounts also. On some accounts
interest needs to be added, and sometimes fees are deducted.

All employees can help customers with deposits and
withdrawals. Only some employees are authorized to open
and close accounts.

Initial Diagram

Customer

deduct fees,
add interest

Employee

Persan

1D {social security number)
Mame
Address

Employee

authority open/close
salary
pay grade
benefits
vacation days
sick days
background check
W-4 infarmation
schedule
start date
end date
accounts [] {so they can't
ACCess)
direct deposit
job title
work station [assigned to)
performance rating
accounts assigned to
time in
time aut

help customer
W-2
make them work long hours
hire
fire
train

UML Diagram

Account

Customer

deposits
withdrawals
actounts[]
credit score
username
password
recovery questions
direct deposit
phone,/fax number

‘type of account
balance
is it open?
interest rate
bank number
customer/owner
date opened

transfer money
set bills to pay
add
delete

deposit
withdraw
ATM withdraw — fee, bank
apen
close
deduct fees
add interest
status

Loam

armount
interest rate
due day
length
whit it's for
collateral

Bills

open loan
pay off loan
default on loan
make payment
make principle payment
refinance

amount
payee
when
how often
purpose

Banks/Branches

branch #
lacation
hew long open
mManager
bills
lomans out
Heustomers
4 aceounts
it employees

UML with Some Data Types Added

Account

type of account
balance

i% it open?
interest rate
bank number
customerfowner
date opened

Enumeration/boaleans
big decimal

boalean

double

string/finteger
String/Customer
String/Date

Customer
deposits
withd rawals
aceounts[] Account
credit score
username
password
recovery guestions
direct depesit
phone/fax number
transfer money
set bills to pay
add
delete

ATM W

deposit
withdraw
ithdraw — fee, bank
open
close
deduct fees
add interest
statis

Let’s ignore some of the complexity and
assume a bank employee is running our
program. The employee can work with
Customers and Accounts.

For one scenario, assume a person comes

into our bank and wants to open an account.

This person is not yet a customer, so the
bank employee needs to add them as a
customer and then open the account for
them, and make that first deposit into the
account.

(By the way, this way of thinking about a

problem, by looking at scenarios, is called
developing use cases.)

Our job is to first define the API.

Customer:
Attributes:

Name

Address

SSN

Accounts

Methods:
Add Customer
Delete Customer

Account:

Attributes:
Balance
Account Number
Customer

Methods:

Open Account
Close Account
Deposit
Withdraw

Transfer Money
8

Our job is to first define the API.

What will our methods need in
order to run, and what will they
return to the client program?

Customer — Add Customer
Delete Customer

Account — Open Account
Close Account
Deposit
Withdraw
Transfer Money

Customer:
Attributes:

Name

Address

SSN

Accounts

Methods:
Add Customer
Delete Customer

Account:

Attributes:
Balance
Account Number
Customer

Methods:

Open Account
Close Account
Deposit
Withdraw

Transfer Money
9

Customer

Customer

Account

Account

Customer(String firstName, String lastName,
String SSN, String street, String city,
String state, String zipCode)
DeleteCustomer()

Account(Customer customer, int acctNumber,
float initAmt = 0.00)
DeleteAccount()
Deposit(float amount)
Withdraw(float amount)
TransferMoney(float amount, Account account)
// Comment: the account parameter is the account
// transferred to

10

Instance Variables

Now that the API is defined, we need to make sure our
attributes are adequate to support the API.

1. What are the data types of each?
2. Do we need to refine any of them further?

Customer:
Name
Address
SSN
Accounts

Account:
Balance
Account Number
Customer

Instance Variables

Customer:

String firstName
String lastName
String SSN
String street
String city
String state
String zipCode
Account [] accounts
//Comment: Let’s say a customer can have a maximum of 20 accounts

Account:
float Balance
int accountNumber
Customer customer

Simplified Bank

Once we are happy with our class definitions, then we get to
write some code!!

Summary

* Object Oriented Design
o Identify the classes
o Identify what information each class needs
o Identify what each class needs to do
o Identify use cases
o Define the API
o Define the instance variables
o Finally — write some code!

