
Dictionaries (and Sets)

Overview

2

 Dictionaries
 Creating

 Accessing

 Common Operations

 Sets
 Creating

 Common Operations

Mapping keys to values

 Common problem: map one thing to another
 Often from a very large table of key/value pairs
 Often we want to do this really fast

3

Application Purpose Key Value

phone book look up phone number name phone number

dictionary look up word word definition

zip code map city to a zip code city zip code

login screen check user knows password username password

 file system find file on disk filename location on disk

web search find all relevant pages search keywords list of pages

DNS find IP address given URL URL IP address

reverse DNS find URL given an IP
address

IP address URL

Collections: useful data types for storing stuff

 List: Knows about the
order of things

 Set: Knows if something
is in the set or not

 Map: Knows how to get
from a key to a value

4

Dictionary Example 1
 Goal: Map a domain name to an IP address

5

domainNameServer = {
 “katie.mtech.edu" : “10.33.73.166",
 “codemt.org" : “10.33.73.165",
 "www.google.com" : “216.58.193.68",
 "google.com" : " 216.58.193.68 ",
 }

domainNameServer[" katie.mtech.edu "] = "127.0.0.1"

str = input("Enter the domain name: ")
print(str + " -> " + domainNameServer[str])

Returns the value for a
key, error if key is not
found.

Replace existing value
of 10.33.73.166
with 127.0.0.1

Create a dictionary of
domain names and IP
addresses

keys and values

 Key must be immutable

 strings, integers, tuples are fine

 lists are NOT immutable

 Value can be anything

Dictionary Example 2

 Goal: Type animal, play sound

7

import winsound

andThe__Says = {
 "cow" : "cow.wav",
 "frog" : "frog.wav",
 "CSCI Students" : "yay.wav"
 }

critter = input("What animal do you want to hear? ")

if critter == "cow":
 winsound.PlaySound(andThe__Says["cow"], winsound.SND_FILENAME)
elif critter == "frog":
 winsound.PlaySound(andThe__Says["frog"], winsound.SND_FILENAME)
elif critter == "CSCI Students":
 winsound.PlaySound(andThe__Says["CSCI Students"], winsound.SND_FILENAME)
else:
 winsound.PlaySound("explosion.wav", winsound.SND_FILENAME)

collections but not a sequence

 dictionaries are collections but they are not
sequences such as lists, strings or tuples

 there is no order to the elements of a dictionary

 in fact, the order (for example, when printed) might change as
elements are added or deleted.

 So how to access dictionary elements?

Access dictionary elements

Access requires [], but the key is the index!

my_dict={}

 an empty dictionary

my_dict['bill']=25

 added the pair 'bill':25

print(my_dict['bill'])

 prints 25

Dictionaries are mutable

 Like lists, dictionaries are a mutable data structure

 you can change the object via various operations, such as index
assignment

my_dict = {'bill':3, 'rich':10}

print(my_dict['bill']) # prints 3

my_dict['bill'] = 100

print(my_dict['bill']) # prints 100

again, common operators

Like others, dictionaries respond to these

 len(my_dict)

 number of key:value pairs in the dictionary

 element in my_dict

 boolean, is element a key in the dictionary

 for key in my_dict:

 iterates through the keys of a dictionary

fewer methods

Only 9 methods in total. Here are some

 key in my_dict
does the key exist in the dictionary

 my_dict.clear() – empty the dictionary

 my_dict.update(yourDict) – for each key in
yourDict, updates my_dict with that key/value
pair

 my_dict.copy - copy

 my_dict.pop(key)– remove key, return value

Dictionary content methods

 my_dict.items() – all the key/value pairs

 my_dict.keys() – all the keys

 my_dict.values() – all the values

They return what is called a dictionary view.

 the order of the views correspond

 are dynamically updated with changes

 are iterable

Views are iterable

for key in my_dict:

 print(key)

 prints all the keys

for key,value in my_dict.items():

 print (key,value)

 prints all the key/value pairs

for value in my_dict.values():

 print (value)

 prints all the values

15

candy = {
 "Snickers" : 3,
 "Mars" : 1,
 "Butterfinger" : 3,
 "Reese's Pieces" : 10
 }

print("All keys:")
for key in candy:
 print(key)

print("\nAll values:")
for value in candy.values():
 print(value)

print("\nAll (key, value) pairs:")
for key, value in candy.items():
 print(key, value)

Dictionary iteration example program

All keys:
Snickers
Mars
Butterfinger
Reese's Pieces

All values:
3
1
3
10

All (key, value) pairs:
Snickers -> 3
Mars -> 1
Butterfinger -> 3
Reese's Pieces -> 10

Order will be in the order of entry.

Frequency of words in list
3 ways

membership test

Example: Histogram.py

seq = input("Enter a word: ")

d = dict()

for element in seq:

 if element not in d:

 d[element] = 1

 else:

 d[element] += 1

print (d)

5/10/09 Python Mini-Course: Lesson 16
1
8

Sets

Sets, as in Mathematical Sets

 in mathematics, a set is a collection of objects,
potentially of many different types

 in a set, no two elements are identical. That is, a set
consists of elements each of which is unique
compared to the other elements

 there is no order to the elements of a set

 a set with no elements is the empty set

Creating a set

Set can be created in one of two ways:
constructor: set(iterable) where
the argument is iterable
 my_set = set('abc')

 my_set {'a', 'b', 'c'}

shortcut: {}, braces where the elements
have no colons (to distinguish them from
dicts)
 my_set = {'a', 'b','c'}

Diverse elements

 A set can consist of a mixture of different types of
elements

my_set = {'a',1,3.14159,True}

 as long as the single argument can be iterated
through, you can make a set of it

no duplicates

 duplicates are automatically removed

my_set = set("aabbccdd")

print(my_set)

 {'a', 'c', 'b', 'd'}

example

Creates an empty set
null_set = set()
print(null_set)

No colons means set, not dictionary
a_set = {1, 2, 3, 4}
print(a_set)

Duplicates are ignored
b_set = {1, 1, 2, 2, 2}
print(b_set)

Different data types are ok
c_set = {'a', 1, 2.5, (5,6)}
print(c_set)

Order is not maintained
a_set = set("abcd")
print(a_set)

common operators

Most data structures respond to these:

 len(my_set)
 the number of elements in a set

 element in my_set
 boolean indicating whether element is in the set

 for element in my_set:
 iterate through the elements in my_set

Set operators

 The set data structure provides some special
operators that correspond to the operators you
learned in middle school.

 These are various combinations of set contents

 These operations have both a method name and a
shortcut binary operator

method: intersection, op: &

a_set=set("abcd") b_set=set("cdef")

a_set & b_set {'c', 'd'}

b_set.intersection(a_set) {'c', 'd'}

 e f a b c d

method:difference op: -

a_set=set("abcd") b_set=set("cdef")

a_set – b_set {'a', 'b'}

b_set.difference(a_set) {'e', 'f'}

 e f a b c d

method: union, op: |

a_set=set("abcd") b_set=set("cdef")

a_set | b_set {'a', 'b', 'c', 'd', 'e', 'f'}

b_set.union(a_set) {'a', 'b', 'c', 'd', 'e', 'f'}

 a b c d e f

method:symmetric_difference, op: ^

a_set=set("abcd"); b_set=set("cdef")

a_set ^ b_set {'a', 'b', 'e', 'f'}

b_set.symmetric_difference(a_set) {'a', 'b', 'e', 'f'}

 e f a b c d

method: issubset, op: <=
method: issuperset, op: >=

small_set=set("abc"); big_set=set("abcdef")

small_set <= big_set True

big_set >= small_set True

a b c d e f

Other Set Ops

 my_set.add("g")
 adds to the set, no effect if item is in set already

 my_set.clear()

 empties the set

 my_set.remove("g") versus
my_set.discard("g")
 remove throws an error if "g" isn't there. discard

doesn't care. Both remove "g" from the set

 my_set.copy()
 returns a copy of my_set

my_set=set {'a', 'b', 'c'}

my_copy=my_set.copy()

my_ref_copy=my_set

my_set.remove('b')

my_set

myCopy

myRefCopy

set(['a','c'])

set(['a','b','c'])

Copy vs. assignment

Summary

 Dictionaries
 Creating

 Accessing

 Common Operations

 Sets
 Creating

 Common Operations

