
ITERATION (REPETITION OF CODE, OR LOOPING)

Fundamentals of Computer Science I

Outline

• Loop Statements

• Types of Loops

• while

• for

• Programming with Loops

Python Loop Statements

• A portion of a program that repeats a statement or

a group of statements is called a loop.

• The statement or group of statements to be

repeated is called the body of the loop.

• For example, a loop could be used to compute grades for

each student in a class.

• There must be a means of exiting the loop.

while Loop

• while loop: common way to repeat code

• Evaluate a boolean expression

• If true, do a block a code

• Go back to start of while loop

• If false, skip over block

4

while (expression):
 statement1
 statement2
 …

while loop with multiple
statements in a block

while (expression):
 statement1
 statement2
 …
else:
 statement

while loop with else
clause

while Loop Example 1
• Print out summations, 0 + 1 + 2 + … + N

5

import sys

limit = int(sys.argv[1])
i = 1
sum = 0

while i <= limit:
 sum += i
 print("sum 0..." + str(i) + " = " + str(sum))
 i += 1

% python Summation.py 4
sum 0...1 = 1
sum 0...2 = 3
sum 0...3 = 6
sum 0...4 = 10

while Loop Example 2

• Print powers of 2 up to but not including limit

6

import sys

limit = int(sys.argv[1])
total = 1

while total < limit:
 print(total)
 total = total * 2 % python Powers2.py 16

1
2
4
8

The while Statement

• Syntax

while Boolean_Expression:

 Body_Statement

Semantics of the while statement

for Loop

• for loop: another common type of loop
• Execute an initialization statement

• target takes on each value in turn in the list of objects

• If there are still items in the object list, do code block

• If no more items, done with loop

8

for target in object:
 statement1
 statement2
 …

for Loop Example
• Print out summations, 0 + 1 + 2 + … + N

9

import sys

limit = int(sys.argv[1])
sum = 0

for i in range (1, limit):
 sum += i
 print("sum 0..." + str(i) + " = " + str(sum))

The for Statement

• A for statement executes the body of a loop a

fixed number of times.
• That number is the number of “things” in the data you give it

• If you use the range(start, end), it will execute the body once for each

number from start to end-1

• Why is this handy?

• If you have a list, recall that indices go from 0 to the list length - 1

• Makes it very handy to process according to list length

The for

Statement

• The

semantics of
the for

statement

Nested Loops
• A loop inside another loop

12

import sys

limit = int(sys.argv[1])
for i in range(0, limit+1):
 for j in range(0, i):
 print("*", end = "")
 print()

% python StarTriangle.py 4
*
**

The Loop Body

• To design the loop body, write out the actions the

code must accomplish.

• Then look for a repeated pattern.
• The repeated pattern will form the body of the loop.

• Some actions may need to be done after the pattern stops

repeating.

Loop Choice

• Does your loop need a counter variable?

• e.g. Going from 0 to N or N to 0 in fixed steps

• Use a for loop

• Does your loop need to execute on a sequence of items?

• Use a for loop

• Do you need an unknown number of loops?

• Use a while loop

• Do you need to perform some actions until a condition is

met?

• Use a while loop

14

Initializing Statements

• Some variables need to have a value before the

loop begins.
• Sometimes this is determined by what is supposed to happen after

one loop iteration.

• Often variables have an initial value of zero or one, but not always.

• Other variables get values only while the loop is

iterating.

The break Statement in Loops

• A break statement can be used to end a loop

immediately.

• The break statement ends only the innermost

loop statement that contains the break statement.

• break statements make loops more difficult to

understand.

• Use break statements sparingly (if ever).

The break Statement in Loops

• Program fragment, ending a loop with a break

statement

while itemNumber <= MAX_ITEMS:
 if itemCost <= leftToSpend:
 if leftToSpend > 0:
 itemNumber += 1
 else:
 print(“You are out of money.”)
 break
 else:
 …

print(…)

The continue Statement in Loops

• A continue statement

• Ends current loop iteration

• Begins the next one

• Like a break statement, avoid using this

• Introduce unneeded complications

Loop Bugs

• Common loop bugs
• Unintended infinite loops

• Off-by-one errors

• Testing equality of floating-point numbers

• Subtle infinite loops
• The loop may terminate for some input values, but not for others.

• For example, you can’t get out of debt when the monthly penalty
exceeds the monthly payment.

Tracing Variables

• Tracing variables means watching the variables

change while the program is running.
• Simply insert temporary output statements in your program to print

of the values of variables of interest

• Or, learn to use the debugging facility that may be provided by your

system.

Infinite Loops

• A loop which repeats without ever ending is called

an infinite loop.

• If the controlling boolean expression never
becomes false, a while loop will repeat without

ending.

Summary

• Loop Statements

• Types of Loops

• while

• for

• Programming with Loops

Your Turn

• Write a while loop that generates a random number

between 0.0 and 100.0 as a test score. The loop ends

when a random number is generated that is a passing

grade or better (70.0). After the loop completes, print out

the score to the screen.

• Name your program RandomGrade.py and submit it to

the Activity04 dropbox on Moodle. 1 point for turning

something in, 2 points for turning in something that is

correct.

