
WORKING WITH LISTS

Fundamentals of Computer Science I

Outline

• Operations on Lists

• List Comprehensions

• Slicing a List

• Copying a List

• For Loop Revisited

• Matrices

• Tuples

Lists Revisited

3

x
• Variable x refers to the whole set of slots

Lists Revisited

4

• x[0],x[1],…,x[6] refers to value at a particular slot
• x[7] = IndexError

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

x

Lists Revisited

5

• x[i] refers to the value at a slot, but the slot index is
determined by variable i
• If i = 0 then x[0], if i = 1 then x[1], etc.

• Whatever inside [] must be an int
• Whatever inside [] must be in 0 to x.length - 1

(inclusive) OR, in Python, a negative number to start
counting from the end of the list

x[i]

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

x

Lists

• Ordered collection of arbitrary objects

• Accessed by offset

• Variable length, heterogeneous, arbitrarily nestable

• Mutable

Slicing a List

• [start:end+1]

• [1:4]

• [:4]

• [1:]

• [:]

• Can loop through just a slice (instead of the entire list)

Operations on Lists

• Assignment of Elements

• L[i] = 3

• L[i:j] = [4, 5, 6]

• Inserting at a Position

• append – adds one item to end

• insert

• motorcycles.insert(0, ‘ducati’)

• Extend

• Adds several items

• L.extend([5, 6, 7])

• Concatenation

• [1, 2, 3] + [4, 5, 6]

• Repeat

• [1, 2, 3] * 4

Operations on Lists

• Removing an Element

• del motorcycles[0]

• pop

• motorcycles.pop()

• motorcycles.pop(0)

• Remove by value

• motorcycles.remove(‘ducati’)

• Remove a range of elements

• L[i:j] = []

• del L.[i:j]

• Removing all elements

• L.clear()

Operations on Lists

• Sort

• cars.sort()

• cars.sort(reverse = True)

• sortedCars = sorted(cars)

• Reverse

• cars.reverse()

• list(reversed(L))

• Copy – creates a new (separate) copy

• cars.copy()

Operations on Lists

• Searching

• L.index(x)

• L.count(x)

• Membership

• 3 in L

List Comprehensions
• Generate an operation on every element in a list with a

single line of code

• L = [x**2 for x in range(5)]

For Loop Revisited

• Looping is for more than just working with lists

• We only talked about for loops with numbers

• They also work with any data type:

• for magician in magicians:

• Indentation

• Additional lines of code in the block

• for x in [1, 2, 3]:

• # do one statement

• # do another statement

• Indentation is important – shows how many statements go with the

for loop

Tuples

• Tuple looks like a list, except with () instead of []

• Immutable

• But you can reassign the variable to a new tuple

• Can loop through values in a tuple just like those in a list

Matrices

• Nested lists

• matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

• # Creates a list containing 5 lists, each of 8 items, all set to 0

• w, h = 8, 5

• matrix = [[0 for x in range(w)] for y in range(h)]

• import random

• w, h = 8, 5

• matrix = [[random() for x in range(w)] for y in range(h)]

Two dimensional list examples
• Two dimensional lists

• Tables of hourly temps for last week

• Table of colors for each pixel of a 2D image

• Table storing piece at each position on a checkerboard

16

0h 1h … 23h

32.5 30.0 45.6

…

59.5 62.1 … 60.0

60.7 61.8 … 70.5

62.6 62.0 … 68.0

Weather data
• Goal: Read in hourly temp data for last week

• Each row is a day of the week

• Each column is a particular hour of the day

17

45.0 48.0 48.9 48.9 48.0 46.0 45.0 46.9 45.0 48.2 48.2 48.2 55.9 57.0 59.0 57.9 57.9 57.2 54.0 50.0 48.9 46.9 44.6 45.0

44.1 43.0 43.0 43.0 39.9 37.9 37.4 39.0 39.0 39.0 39.0 37.9 39.2 41.0 41.0 41.0 39.0 37.9 36.0 35.6 33.8 32.0 32.0 30.2

30.2 28.0 27.0 23.0 23.0 23.0 19.9 19.0 19.0 23.0 30.9 33.1 34.0 37.0 35.6 36.0 32.0 32.0 32.0 27.0 27.0 25.0 21.9 23.0

21.9 21.0 21.0 21.0 19.4 17.6 17.6 17.6 19.4 19.0 21.0 26.1 34.0 37.4 39.0 41.0 41.0 39.0 37.0 37.0 37.0 34.0 35.1 34.0

33.8 32.0 37.0 30.9 32.0 34.0 33.1 30.9 32.0 35.1 39.0 41.0 39.9 42.1 43.0 43.0 42.1 39.9 36.0 33.1 27.0 25.0 23.0 19.9

19.9 19.0 18.0 16.0 16.0 15.1 14.0 14.0 15.1 21.0 27.0 34.0 41.0 48.0 52.0 50.0 51.1 50.0 46.0 48.9 44.1 44.1 39.9 39.2

46.0 46.0 45.0 44.6 44.1 44.1 44.1 44.1 42.1 42.1 42.8 44.1 45.0 46.9 46.0 44.1 44.1 42.8 39.0 37.0 35.1 35.1 30.9 30.0

10/24/11

10/29/11

01:53 20:53

Summary

• Operations on Lists

• List Comprehensions

• Slicing a List

• Copying a List

• For Loop Revisited

• Matrices

• Tuples

Your Turn

• Write a program that creates a two-dimensional list of

random floating point numbers between 0 and 1. The

dimensions of the list should be 5x6. Print out the values in

the 2D list.

• Name your program List2D.py and submit it to the Activity02

dropbox on Moodle. 1 point for turning something in, 2

points for turning in something that is correct.

