
WORKING WITH LISTS 

Fundamentals of Computer Science I  
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• Operations on Lists 

• List Comprehensions 

• Slicing a List 

• Copying a List 

• For Loop Revisited 

• Matrices 

• Tuples 

 



Lists Revisited 
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x 
• Variable x refers to the whole set of slots 



Lists Revisited 
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• x[0],x[1],…,x[6] refers to value at a particular slot 
• x[7] = IndexError 

x[0] x[1] x[2] x[3] x[4] x[5] x[6] 

x 



Lists Revisited 
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• x[i] refers to the value at a slot, but the slot index is 
determined by variable i 
• If i = 0 then x[0], if i = 1 then x[1], etc. 

• Whatever inside [] must be an int 
• Whatever inside [] must be in 0 to x.length - 1 

(inclusive) OR, in Python, a negative number to start 
counting from the end of the list 
 

x[i] 

x[0] x[1] x[2] x[3] x[4] x[5] x[6] 

x 



Lists 

• Ordered collection of arbitrary objects 

• Accessed by offset 

• Variable length, heterogeneous, arbitrarily nestable 

• Mutable 



 

Slicing a List 

 
• [start:end+1] 

• [1:4] 

• [:4] 

• [1:] 

• [:] 

• Can loop through just a slice (instead of the entire list) 



Operations on Lists 

• Assignment of Elements 

• L[i] = 3 

• L[i:j] = [4, 5, 6] 

• Inserting at a Position 

• append – adds one item to end 

• insert 

• motorcycles.insert(0, ‘ducati’) 

• Extend 

• Adds several items 

• L.extend([5, 6, 7]) 

• Concatenation 

• [1, 2, 3] + [4, 5, 6] 

• Repeat 

• [1, 2, 3] * 4 

 

 

 

 

 



Operations on Lists 

• Removing an Element 

• del motorcycles[0] 

• pop 

• motorcycles.pop() 

• motorcycles.pop(0) 

• Remove by value 

• motorcycles.remove(‘ducati’) 

• Remove a range of elements 

• L[i:j] = [] 

• del L.[i:j] 

• Removing all elements 

• L.clear() 

 

 



Operations on Lists 

• Sort 

• cars.sort() 

• cars.sort(reverse = True) 

• sortedCars = sorted(cars) 

• Reverse 

• cars.reverse() 

• list(reversed(L)) 

• Copy – creates a new (separate) copy 

• cars.copy() 

 

 



Operations on Lists 

• Searching 

• L.index(x) 

• L.count(x) 

• Membership 

• 3 in L 



 

List Comprehensions 
• Generate an operation on every element in a list with a 

single line of code 

• L = [x**2 for x in range(5)] 



For Loop Revisited 

• Looping is for more than just working with lists 

• We only talked about for loops with numbers 

• They also work with any data type: 

• for magician in magicians: 

• Indentation 

• Additional lines of code in the block 

• for x in [1, 2, 3]: 

• # do one statement 

• # do another statement 

• Indentation is important – shows how many statements go with the 

for loop 



Tuples 

• Tuple looks like a list, except with () instead of [] 

• Immutable 

• But you can reassign the variable to a new tuple 

• Can loop through values in a tuple just like those in a list 



Matrices 

 
• Nested lists 

• matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 

 

• # Creates a list containing 5 lists, each of 8 items, all set to 0  

• w, h = 8, 5  

• matrix = [[0 for x in range(w)] for y in range(h)]  

 

• import random 

• w, h = 8, 5  

• matrix = [[random() for x in range(w)] for y in range(h)]  

 



Two dimensional list examples 
• Two dimensional lists 

• Tables of hourly temps for last week 

• Table of colors for each pixel of a 2D image 

• Table storing piece at each position on a checkerboard 
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0h 1h … 23h 

32.5 30.0 45.6 

… 

59.5 62.1 … 60.0 

60.7 61.8 … 70.5 

62.6 62.0 … 68.0 



Weather data 
• Goal: Read in hourly temp data for last week 

• Each row is a day of the week 

• Each column is a particular hour of the day 
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45.0 48.0 48.9 48.9 48.0 46.0 45.0 46.9 45.0 48.2 48.2 48.2 55.9 57.0 59.0 57.9 57.9 57.2 54.0 50.0 48.9 46.9 44.6 45.0 

44.1 43.0 43.0 43.0 39.9 37.9 37.4 39.0 39.0 39.0 39.0 37.9 39.2 41.0 41.0 41.0 39.0 37.9 36.0 35.6 33.8 32.0 32.0 30.2 

30.2 28.0 27.0 23.0 23.0 23.0 19.9 19.0 19.0 23.0 30.9 33.1 34.0 37.0 35.6 36.0 32.0 32.0 32.0 27.0 27.0 25.0 21.9 23.0 

21.9 21.0 21.0 21.0 19.4 17.6 17.6 17.6 19.4 19.0 21.0 26.1 34.0 37.4 39.0 41.0 41.0 39.0 37.0 37.0 37.0 34.0 35.1 34.0 

33.8 32.0 37.0 30.9 32.0 34.0 33.1 30.9 32.0 35.1 39.0 41.0 39.9 42.1 43.0 43.0 42.1 39.9 36.0 33.1 27.0 25.0 23.0 19.9 

19.9 19.0 18.0 16.0 16.0 15.1 14.0 14.0 15.1 21.0 27.0 34.0 41.0 48.0 52.0 50.0 51.1 50.0 46.0 48.9 44.1 44.1 39.9 39.2 

46.0 46.0 45.0 44.6 44.1 44.1 44.1 44.1 42.1 42.1 42.8 44.1 45.0 46.9 46.0 44.1 44.1 42.8 39.0 37.0 35.1 35.1 30.9 30.0 

10/24/11 

10/29/11 

01:53 20:53 



Summary 

• Operations on Lists 

• List Comprehensions 

• Slicing a List 

• Copying a List 

• For Loop Revisited 

• Matrices 

• Tuples 

 



Your Turn 

• Write a program that creates a two-dimensional list of 

random floating point numbers between 0 and 1. The 

dimensions of the list should be 5x6. Print out the values in 

the 2D list. 

 

• Name your program List2D.py and submit it to the Activity02 

dropbox on Moodle. 1 point for turning something in, 2 

points for turning in something that is correct. 

 


