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Hardware and Memory 

• Most modern computers have 

similar components including 

• Input devices (keyboard, mouse, 

touchscreen, etc.) 

• Output devices (display screen, 

printer, etc.) 

• A processor 

• Two kinds of memory  

(main memory and  

auxiliary memory). 



Main memory 

• Working memory used to store 

• The current program 

• The data the program is using 

• The results of intermediate calculations 

• Usually measured in megabytes or gigabytes 

(e.g. 8GB RAM) 

• RAM is short for random access memory 

• A byte is a quantity of memory 



Bits, Bytes, and Addresses 

• A bit is a digit with a value of either 0 or 1. 

• A byte consists of 8 bits. 

• Each byte in main memory resides at a 

numbered location called its address. 



Main Memory 
• Data of all kinds (numbers, 
letters, strings of 
characters, audio, video, 
even programs) are 
encoded and stored using 
1s and 0s. 

• When more than a single 
byte is needed, several 
adjacent bytes are used. 
• The address of the first byte is 

the address of the unit of 
bytes. 

• When the computer is 
turned off, main memory is 
erased (volatile memory). 



Auxiliary Memory 
• Auxiliary memory uses 
devices such as a hard 
drive, DVD, USB drive, 
etc. 

• Data (files) need to be 
“saved” to the auxiliary 
memory 

• Data is still stored in bits 
and bytes 

• When the computer is 
turned off, this data does 
not go away (persistent 
storage) 



Programs 

• A program is a set of instructions for a computer 

to follow. 

• We use programs almost daily (email, word 

processors, video games, bank ATMs, etc.). 

• When the computer follows the instructions it is 

running or executing the program. 

 



View of Programming from 10,000 Feet 
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Languages 

• Machine language 
• Low level, what the hardware understands 

• Tedious and error-prone to write 

• Specific to a particular type of computer 

• Natural language  
• Imprecise and ambiguous 

• Hard to convert to instructions for the hardware  

• High level programming language 
• Good balance between the two extremes 

 



Becoming a Programmer: Step 1 
Choose a language… 

 

and hundreds 
more… 



Our Choice: Python 
• Advantages 

• Widely used, modern 

• Freely available, cross-platform 

• Simpler to learn than other languages 

• No perfect single language 
• You'll learn many other languages 

• C/C++, assembly, Java, C#, JavaScript, PHP... 

• Programming skills translate easily between them 

"There are only two kinds of 
languages: the ones people 

complain about and the ones 
nobody uses." 

  -Bjarne Stroustrup, father of 

C++ 



Your First Program 

http://www.zazzle.com/baby_girls_first_java_program_hello_world_tshirt-235063563751392326  $23.95 
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How Python Works 
Source code: 

Plain text file created 
in some editor 

(notepad, vi, TextEdit, 
Idle editor, …) or typed 

into the Python shell 

import dis 
def example(x): 
    for i in range(x): 
        print(2 * i) 

Example.py 

>>> dis.dis(example) 
  2           0 SETUP_LOOP              28 (to 30) 
              2 LOAD_GLOBAL              0 (range) 
              4 LOAD_FAST                0 (x) 
              6 CALL_FUNCTION            1 
              8 GET_ITER 
        >>   10 FOR_ITER                16 (to 28) 
             12 STORE_FAST               1 (i) 
 
  3          14 LOAD_GLOBAL              1 (print) 
             16 LOAD_CONST               1 (2) 
             18 LOAD_FAST                1 (i) 
             20 BINARY_MULTIPLY 
             22 CALL_FUNCTION            1 
             24 POP_TOP 
             26 JUMP_ABSOLUTE           10 
        >>   28 POP_BLOCK 
        >>   30 LOAD_CONST               0 (None) 
             32 RETURN_VALUE 

“Disassembled” bytecode 

Python 
bytecode: 

Intermediate language 
that any device 

running Python can 
understand (humans 
generally ignore this) 

“compiling” % python Example 



How Python Works 
Python 

bytecode: 
Intermediate language 

that any device 
running Python can 

understand (humans 
generally ignore this) 

“running” 

>>> dis.dis(example) 
  2           0 SETUP_LOOP              28 (to 30) 
              2 LOAD_GLOBAL              0 (range) 
              4 LOAD_FAST                0 (x) 
              6 CALL_FUNCTION            1 
              8 GET_ITER 
        >>   10 FOR_ITER                16 (to 28) 
             12 STORE_FAST               1 (i) 
 
  3          14 LOAD_GLOBAL              1 (print) 
             16 LOAD_CONST               1 (2) 
             18 LOAD_FAST                1 (i) 
             20 BINARY_MULTIPLY 
             22 CALL_FUNCTION            1 
             24 POP_TOP 
             26 JUMP_ABSOLUTE           10 
        >>   28 POP_BLOCK 
        >>   30 LOAD_CONST               0 (None) 
             32 RETURN_VALUE 

“Disassembled” bytecode 



Idle – Python  
Editor 



Idle – Python  
Shell 



Idle Python Editor 

• Recommended but not required 

• Free 

• Helpful features: 
• Syntax highlighting 

• Run code from editor 

• We will use mostly as a text editor 
• Ignoring many of its features 

• How to install?   
• See course web site, resources page 

• Can use any text editor / Python editor that 
you like, though 



Anatomy of a Python Program 



Some Terminology 

DEFINITION 

• Statement – an instruction to 
the computer 

• Syntax – the grammar rules for 
a programming language 

• Flow of Control – the order in 
which instructions are executed 



Algorithms 

• By designing algorithms, programmers provide 

actions for the computer to perform. 

• An algorithm describes a means of performing an 

action. 

• Once an algorithm is defined, expressing it in 

Python (or in another programming language) 

usually is easy. 



Algorithms 
• An algorithm is a 

set of instructions 

for solving a 

problem. 

• An algorithm must 

be expressed 

completely and 

precisely. 

• Algorithms usually 

are expressed in 

English or in 

pseudocode. 



Example: Total Cost of All Items 

• Write the number 0 on the 

whiteboard. 

• For each item on the list 

• Add the cost of the item to the 

number on the whiteboard 

• Replace the number on the 

whiteboard with the result of this 

addition. 

• Announce that the answer is 

the number written on the 

whiteboard. 
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