
BASICS

http://www.flickr.com/photos/oskay/472097903/

http://www.flickr.com/photos/oskay/472097903/

Outline

• Computer Basics

• Programs and Languages

• Introduction to the Idle Shell / Editor

• Our First Program

• Comments

• Algorithms

CSCI 135 - Fundamentals of Computer Science I 2

Hardware and Memory

• Most modern computers have

similar components including

• Input devices (keyboard, mouse,

touchscreen, etc.)

• Output devices (display screen,

printer, etc.)

• A processor

• Two kinds of memory

(main memory and

auxiliary memory).

Main memory

• Working memory used to store

• The current program

• The data the program is using

• The results of intermediate calculations

• Usually measured in megabytes or gigabytes

(e.g. 8GB RAM)

• RAM is short for random access memory

• A byte is a quantity of memory

Bits, Bytes, and Addresses

• A bit is a digit with a value of either 0 or 1.

• A byte consists of 8 bits.

• Each byte in main memory resides at a

numbered location called its address.

Main Memory
• Data of all kinds (numbers,
letters, strings of
characters, audio, video,
even programs) are
encoded and stored using
1s and 0s.

• When more than a single
byte is needed, several
adjacent bytes are used.
• The address of the first byte is

the address of the unit of
bytes.

• When the computer is
turned off, main memory is
erased (volatile memory).

Auxiliary Memory
• Auxiliary memory uses
devices such as a hard
drive, DVD, USB drive,
etc.

• Data (files) need to be
“saved” to the auxiliary
memory

• Data is still stored in bits
and bytes

• When the computer is
turned off, this data does
not go away (persistent
storage)

Programs

• A program is a set of instructions for a computer

to follow.

• We use programs almost daily (email, word

processors, video games, bank ATMs, etc.).

• When the computer follows the instructions it is

running or executing the program.

View of Programming from 10,000 Feet

Your

program Black

box

Hi, Alice. How are are?

Alice Input

string

Output

string

Languages

• Machine language
• Low level, what the hardware understands

• Tedious and error-prone to write

• Specific to a particular type of computer

• Natural language
• Imprecise and ambiguous

• Hard to convert to instructions for the hardware

• High level programming language
• Good balance between the two extremes

Becoming a Programmer: Step 1
Choose a language…

and hundreds
more…

Our Choice: Python
• Advantages

• Widely used, modern

• Freely available, cross-platform

• Simpler to learn than other languages

• No perfect single language
• You'll learn many other languages

• C/C++, assembly, Java, C#, JavaScript, PHP...

• Programming skills translate easily between them

"There are only two kinds of
languages: the ones people

complain about and the ones
nobody uses."

 -Bjarne Stroustrup, father of

C++

Your First Program

http://www.zazzle.com/baby_girls_first_java_program_hello_world_tshirt-235063563751392326 $23.95

http://www.zazzle.com/baby_girls_first_java_program_hello_world_tshirt-235063563751392326
http://www.zazzle.com/baby_girls_first_java_program_hello_world_tshirt-235063563751392326
http://www.zazzle.com/baby_girls_first_java_program_hello_world_tshirt-235063563751392326

How Python Works
Source code:

Plain text file created
in some editor

(notepad, vi, TextEdit,
Idle editor, …) or typed

into the Python shell

import dis
def example(x):
 for i in range(x):
 print(2 * i)

Example.py

>>> dis.dis(example)
 2 0 SETUP_LOOP 28 (to 30)
 2 LOAD_GLOBAL 0 (range)
 4 LOAD_FAST 0 (x)
 6 CALL_FUNCTION 1
 8 GET_ITER
 >> 10 FOR_ITER 16 (to 28)
 12 STORE_FAST 1 (i)

 3 14 LOAD_GLOBAL 1 (print)
 16 LOAD_CONST 1 (2)
 18 LOAD_FAST 1 (i)
 20 BINARY_MULTIPLY
 22 CALL_FUNCTION 1
 24 POP_TOP
 26 JUMP_ABSOLUTE 10
 >> 28 POP_BLOCK
 >> 30 LOAD_CONST 0 (None)
 32 RETURN_VALUE

“Disassembled” bytecode

Python
bytecode:

Intermediate language
that any device

running Python can
understand (humans
generally ignore this)

“compiling” % python Example

How Python Works
Python

bytecode:
Intermediate language

that any device
running Python can

understand (humans
generally ignore this)

“running”

>>> dis.dis(example)
 2 0 SETUP_LOOP 28 (to 30)
 2 LOAD_GLOBAL 0 (range)
 4 LOAD_FAST 0 (x)
 6 CALL_FUNCTION 1
 8 GET_ITER
 >> 10 FOR_ITER 16 (to 28)
 12 STORE_FAST 1 (i)

 3 14 LOAD_GLOBAL 1 (print)
 16 LOAD_CONST 1 (2)
 18 LOAD_FAST 1 (i)
 20 BINARY_MULTIPLY
 22 CALL_FUNCTION 1
 24 POP_TOP
 26 JUMP_ABSOLUTE 10
 >> 28 POP_BLOCK
 >> 30 LOAD_CONST 0 (None)
 32 RETURN_VALUE

“Disassembled” bytecode

Idle – Python
Editor

Idle – Python
Shell

Idle Python Editor

• Recommended but not required

• Free

• Helpful features:
• Syntax highlighting

• Run code from editor

• We will use mostly as a text editor
• Ignoring many of its features

• How to install?
• See course web site, resources page

• Can use any text editor / Python editor that
you like, though

Anatomy of a Python Program

Some Terminology

DEFINITION

• Statement – an instruction to
the computer

• Syntax – the grammar rules for
a programming language

• Flow of Control – the order in
which instructions are executed

Algorithms

• By designing algorithms, programmers provide

actions for the computer to perform.

• An algorithm describes a means of performing an

action.

• Once an algorithm is defined, expressing it in

Python (or in another programming language)

usually is easy.

Algorithms
• An algorithm is a

set of instructions

for solving a

problem.

• An algorithm must

be expressed

completely and

precisely.

• Algorithms usually

are expressed in

English or in

pseudocode.

Example: Total Cost of All Items

• Write the number 0 on the

whiteboard.

• For each item on the list

• Add the cost of the item to the

number on the whiteboard

• Replace the number on the

whiteboard with the result of this

addition.

• Announce that the answer is

the number written on the

whiteboard.

Summary

• Computer Basics

• Programs and Languages

• Introduction to the Idle Shell / Editor

• Our First Program

• Comments

• Algorithms

CSCI 135 - Fundamentals of Computer Science I 24

