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Case-Based Learning 



Non-Separable Data 



Case-Based Reasoning 

 Classification from similarity 
 Case-based reasoning 
 Predict an instance’s label using similar instances 

 

 Nearest-neighbor classification 
 1-NN: copy the label of the most similar data point 
 K-NN: vote the k nearest neighbors (need a weighting 

scheme) 
 Key issue: how to define similarity 
 Trade-offs: Small k gives relevant neighbors, Large k gives 

smoother functions 

 

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html 



Parametric / Non-Parametric 

 Parametric models: 
 Fixed set of parameters 

 More data means better settings 

 Non-parametric models: 
 Complexity of the classifier increases with data 

 Better in the limit, often worse in the non-limit 

 (K)NN is non-parametric 
Truth 

2 Examples 10 Examples 100 Examples 10000 Examples 



Nearest-Neighbor Classification 

 Nearest neighbor for digits: 
 Take new image 
 Compare to all training images 
 Assign based on closest example 

 

 Encoding: image is vector of intensities: 
 
 

 What’s the similarity function? 
 Dot product of two images vectors? 

 
 
 

 Usually normalize vectors so ||x|| = 1 
 min = 0 (when?), max = 1 (when?) 
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Similarity Functions 

 



Basic Similarity 

 Many similarities based on feature dot products: 

 

 

 

 If features are just the pixels: 

 

 

 

 Note: not all similarities are of this form 



Invariant Metrics 

 Better similarity functions use knowledge about vision 

 Example: invariant metrics: 

 Similarities are invariant under certain transformations 

 Rotation, scaling, translation, stroke-thickness… 

 E.g:  

 
 

 16 x 16 = 256 pixels; a point in 256-dim space 

 These points have small similarity in R256 (why?) 

 How can we incorporate such invariances into our similarities? 

 
This and next few slides adapted from Xiao Hu, UIUC 



Rotation Invariant Metrics 

 Each example is now a curve in R256 

 Rotation invariant similarity:  

 

      s’=max s( r(         ),  r(         )) 

 

 E.g. highest similarity between images’ 
rotation lines 

 



Template Deformation 

 Deformable templates: 
 An “ideal” version of each category 

 Best-fit to image using min variance 

 Cost for high distortion of template 

 Cost for image points being far from distorted template 

 Used in many commercial digit recognizers 

Examples from [Hastie 94] 



A Tale of Two Approaches… 

 Nearest neighbor-like approaches 

 Can use fancy similarity functions 

 Don’t actually get to do explicit learning 

 

 Perceptron-like approaches 

 Explicit training to reduce empirical error 

 Can’t use fancy similarity, only linear 

 Or can they?  Let’s find out! 



Kernelization 



Perceptron Weights 

 What is the final value of a weight wy of a perceptron? 
 Can it be any real vector? 

 No!  It’s built by adding up inputs. 

 

 

 

 

 
 

 Can reconstruct weight vectors (the primal representation) from 
update counts (the dual representation) 



Dual Perceptron 

 How to classify a new example x? 
 
 
 
 
 
 
 
 
 
 
 

 If someone tells us the value of K for each pair of examples, never need to build the 
weight vectors (or the feature vectors)! 



Dual Perceptron 

 Start with zero counts (alpha) 

 Pick up training instances one by one 

 Try to classify xn, 

 

 

 If correct, no change! 

 If wrong: lower count of wrong class (for this instance), raise 
count of right class (for this instance) 

 



Kernelized Perceptron 

 If we had a black box (kernel) K that told us the dot product of two examples x and x’: 
 Could work entirely with the dual representation 

 No need to ever take dot products (“kernel trick”) 

 

 

 

 

 

 

 Like nearest neighbor – work with black-box similarities 

 Downside: slow if many examples get nonzero alpha 



Kernels: Who Cares? 

 So far: a very strange way of doing a very simple calculation 

 

 “Kernel trick”: we can substitute any* similarity function in place of the 
dot product 

 

 Lets us learn new kinds of hypotheses 

 

* Fine print: if your kernel doesn’t satisfy certain 
technical requirements, lots of proofs break.  E.g. 
convergence, mistake bounds.  In practice, illegal 
kernels sometimes work (but not always). 



Non-Linearity 

 



Non-Linear Separators 

 Data that is linearly separable works out great for linear decision rules: 

 

 

 But what are we going to do if the dataset is just too hard?  

 

 

 How about… mapping data to a higher-dimensional space: 
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This and next few slides adapted from Ray Mooney, UT 



Non-Linear Separators 

 General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable: 

Φ:  x → φ(x) 



Some Kernels 

 Kernels implicitly map original vectors to higher dimensional spaces, take the dot 
product there, and hand the result back 
 

 Linear kernel: 
 

 Quadratic kernel: 
 
 
 

 RBF: infinite dimensional representation 
 
 

 Discrete kernels: e.g. string kernels 



Why Kernels? 

 Can’t you just add these features on your own (e.g. add all pairs of 
features instead of using the quadratic kernel)? 
 Yes, in principle, just compute them 

 No need to modify any algorithms 

 But, number of features can get large (or infinite) 

 Some kernels not as usefully thought of in their expanded representation, e.g. RBF 
kernels 

 

 Kernels let us compute with these features implicitly 
 Example: implicit dot product in quadratic kernel takes much less space and time 

per dot product 

 Of course, there’s the cost for using the pure dual algorithms: you need to compute 
the similarity to every training datum 



Recap: Classification 

 Classification systems: 
 Supervised learning 

 Make a prediction given evidence 

 We’ve seen several methods for this 

 Useful when you have labeled data 

 



Clustering 

 Clustering systems: 
 Unsupervised learning 
 Detect patterns in unlabeled data 

 E.g. group emails or search results 
 E.g. find categories of customers 
 E.g. detect anomalous program executions 

 Useful when don’t know what you’re 
looking for 

 Requires data, but no labels 
 Often get gibberish 



Clustering 

 



Clustering 

 Basic idea: group together similar instances 
 Example: 2D point patterns 

 
 
 
 
 
 
 

 What could “similar” mean? 
 One option: small (squared) Euclidean distance 



K-Means 

 



K-Means 

 An iterative clustering 
algorithm 
 Pick K random points as cluster 

centers (means) 
 Alternate: 

 Assign data instances to closest 
mean 

 Assign each mean to the average of 
its assigned points 

 Stop when no points’ 
assignments change 



K-Means Example 



K-Means as Optimization 

 Consider the total distance to the means: 

 

 

 

 

 Each iteration reduces phi 
 

 Two stages each iteration: 
 Update assignments: fix means c, change assignments a 

 Update means: fix assignments a, change means c 

 

points 

assignments 

means 



Phase I: Update Assignments 

 For each point, re-assign to 
closest mean: 

 

 
 

 Can only decrease total 
distance phi! 



Phase II: Update Means 

 Move each mean to the average 
of its assigned points: 
 
 
 
 

 Also can only decrease total 
distance… (Why?) 
 

 Fun fact: the point y with 
minimum squared Euclidean 
distance to a set of points {x} is 
their mean 



Initialization 

 K-means is non-deterministic 

 Requires initial means 

 It does matter what you pick! 

 What can go wrong? 

 

 

 Various schemes for preventing 
this kind of thing: variance-based 
split / merge, initialization 
heuristics 

 



K-Means Getting Stuck 

 A local optimum: 

Why doesn’t this work out like the 
earlier example, with the purple 
taking over half the blue? 



K-Means Questions 

 Will K-means converge? 
 To a global optimum? 

 

 Will it always find the true patterns in the data? 
 If the patterns are very very clear? 

 

 Will it find something interesting? 
 

 Do people ever use it? 
 

 How many clusters to pick?  



Agglomerative Clustering 



Agglomerative Clustering 

 Agglomerative clustering: 
 First merge very similar instances 
 Incrementally build larger clusters out of 

smaller clusters 

 
 Algorithm: 

 Maintain a set of clusters 
 Initially, each instance in its own cluster 
 Repeat: 

 Pick the two closest clusters 
 Merge them into a new cluster 
 Stop when there’s only one cluster left 

 
 Produces not one clustering, but a family of 

clusterings represented by a dendrogram 
 



Agglomerative Clustering 

 How should we define “closest” for clusters with 
multiple elements? 
 

 Many options 
 Closest pair (single-link clustering) 
 Farthest pair (complete-link clustering) 
 Average of all pairs 
 Ward’s method (min variance, like k-means) 
 

 Different choices create different clustering 
behaviors 



Example: Google News 

43 

Top-level categories:  

supervised classification 

Story groupings: 

unsupervised clustering 
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