
CSCI 446: Artificial Intelligence
 Kernels and Clustering

Instructors: Michele Van Dyne
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Outline

 Case-Based Learning

 Similarity Functions

 Kernelization

 Non-Linearity

 Clustering

 K-Means

 Agglomerative

Case-Based Learning

Non-Separable Data

Case-Based Reasoning

 Classification from similarity
 Case-based reasoning
 Predict an instance’s label using similar instances

 Nearest-neighbor classification
 1-NN: copy the label of the most similar data point
 K-NN: vote the k nearest neighbors (need a weighting

scheme)
 Key issue: how to define similarity
 Trade-offs: Small k gives relevant neighbors, Large k gives

smoother functions

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

Parametric / Non-Parametric

 Parametric models:
 Fixed set of parameters

 More data means better settings

 Non-parametric models:
 Complexity of the classifier increases with data

 Better in the limit, often worse in the non-limit

 (K)NN is non-parametric
Truth

2 Examples 10 Examples 100 Examples 10000 Examples

Nearest-Neighbor Classification

 Nearest neighbor for digits:
 Take new image
 Compare to all training images
 Assign based on closest example

 Encoding: image is vector of intensities:

 What’s the similarity function?
 Dot product of two images vectors?

 Usually normalize vectors so ||x|| = 1
 min = 0 (when?), max = 1 (when?)

0

1

2

0

1

2

Similarity Functions

Basic Similarity

 Many similarities based on feature dot products:

 If features are just the pixels:

 Note: not all similarities are of this form

Invariant Metrics

 Better similarity functions use knowledge about vision

 Example: invariant metrics:

 Similarities are invariant under certain transformations

 Rotation, scaling, translation, stroke-thickness…

 E.g:

 16 x 16 = 256 pixels; a point in 256-dim space

 These points have small similarity in R256 (why?)

 How can we incorporate such invariances into our similarities?

This and next few slides adapted from Xiao Hu, UIUC

Rotation Invariant Metrics

 Each example is now a curve in R256

 Rotation invariant similarity:

 s’=max s(r(), r())

 E.g. highest similarity between images’
rotation lines

Template Deformation

 Deformable templates:
 An “ideal” version of each category

 Best-fit to image using min variance

 Cost for high distortion of template

 Cost for image points being far from distorted template

 Used in many commercial digit recognizers

Examples from [Hastie 94]

A Tale of Two Approaches…

 Nearest neighbor-like approaches

 Can use fancy similarity functions

 Don’t actually get to do explicit learning

 Perceptron-like approaches

 Explicit training to reduce empirical error

 Can’t use fancy similarity, only linear

 Or can they? Let’s find out!

Kernelization

Perceptron Weights

 What is the final value of a weight wy of a perceptron?
 Can it be any real vector?

 No! It’s built by adding up inputs.

 Can reconstruct weight vectors (the primal representation) from
update counts (the dual representation)

Dual Perceptron

 How to classify a new example x?

 If someone tells us the value of K for each pair of examples, never need to build the
weight vectors (or the feature vectors)!

Dual Perceptron

 Start with zero counts (alpha)

 Pick up training instances one by one

 Try to classify xn,

 If correct, no change!

 If wrong: lower count of wrong class (for this instance), raise
count of right class (for this instance)

Kernelized Perceptron

 If we had a black box (kernel) K that told us the dot product of two examples x and x’:
 Could work entirely with the dual representation

 No need to ever take dot products (“kernel trick”)

 Like nearest neighbor – work with black-box similarities

 Downside: slow if many examples get nonzero alpha

Kernels: Who Cares?

 So far: a very strange way of doing a very simple calculation

 “Kernel trick”: we can substitute any* similarity function in place of the
dot product

 Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break. E.g.
convergence, mistake bounds. In practice, illegal
kernels sometimes work (but not always).

Non-Linearity

Non-Linear Separators

 Data that is linearly separable works out great for linear decision rules:

 But what are we going to do if the dataset is just too hard?

 How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next few slides adapted from Ray Mooney, UT

Non-Linear Separators

 General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ: x → φ(x)

Some Kernels

 Kernels implicitly map original vectors to higher dimensional spaces, take the dot
product there, and hand the result back

 Linear kernel:

 Quadratic kernel:

 RBF: infinite dimensional representation

 Discrete kernels: e.g. string kernels

Why Kernels?

 Can’t you just add these features on your own (e.g. add all pairs of
features instead of using the quadratic kernel)?
 Yes, in principle, just compute them

 No need to modify any algorithms

 But, number of features can get large (or infinite)

 Some kernels not as usefully thought of in their expanded representation, e.g. RBF
kernels

 Kernels let us compute with these features implicitly
 Example: implicit dot product in quadratic kernel takes much less space and time

per dot product

 Of course, there’s the cost for using the pure dual algorithms: you need to compute
the similarity to every training datum

Recap: Classification

 Classification systems:
 Supervised learning

 Make a prediction given evidence

 We’ve seen several methods for this

 Useful when you have labeled data

Clustering

 Clustering systems:
 Unsupervised learning
 Detect patterns in unlabeled data

 E.g. group emails or search results
 E.g. find categories of customers
 E.g. detect anomalous program executions

 Useful when don’t know what you’re
looking for

 Requires data, but no labels
 Often get gibberish

Clustering

Clustering

 Basic idea: group together similar instances
 Example: 2D point patterns

 What could “similar” mean?
 One option: small (squared) Euclidean distance

K-Means

K-Means

 An iterative clustering
algorithm
 Pick K random points as cluster

centers (means)
 Alternate:

 Assign data instances to closest
mean

 Assign each mean to the average of
its assigned points

 Stop when no points’
assignments change

K-Means Example

K-Means as Optimization

 Consider the total distance to the means:

 Each iteration reduces phi

 Two stages each iteration:
 Update assignments: fix means c, change assignments a

 Update means: fix assignments a, change means c

points

assignments

means

Phase I: Update Assignments

 For each point, re-assign to
closest mean:

 Can only decrease total
distance phi!

Phase II: Update Means

 Move each mean to the average
of its assigned points:

 Also can only decrease total
distance… (Why?)

 Fun fact: the point y with
minimum squared Euclidean
distance to a set of points {x} is
their mean

Initialization

 K-means is non-deterministic

 Requires initial means

 It does matter what you pick!

 What can go wrong?

 Various schemes for preventing
this kind of thing: variance-based
split / merge, initialization
heuristics

K-Means Getting Stuck

 A local optimum:

Why doesn’t this work out like the
earlier example, with the purple
taking over half the blue?

K-Means Questions

 Will K-means converge?
 To a global optimum?

 Will it always find the true patterns in the data?
 If the patterns are very very clear?

 Will it find something interesting?

 Do people ever use it?

 How many clusters to pick?

Agglomerative Clustering

Agglomerative Clustering

 Agglomerative clustering:
 First merge very similar instances
 Incrementally build larger clusters out of

smaller clusters

 Algorithm:

 Maintain a set of clusters
 Initially, each instance in its own cluster
 Repeat:

 Pick the two closest clusters
 Merge them into a new cluster
 Stop when there’s only one cluster left

 Produces not one clustering, but a family of

clusterings represented by a dendrogram

Agglomerative Clustering

 How should we define “closest” for clusters with
multiple elements?

 Many options
 Closest pair (single-link clustering)
 Farthest pair (complete-link clustering)
 Average of all pairs
 Ward’s method (min variance, like k-means)

 Different choices create different clustering
behaviors

Example: Google News

43

Top-level categories:

supervised classification

Story groupings:

unsupervised clustering

Summary

 Case-Based Learning

 Similarity Functions

 Kernelization

 Non-Linearity

 Clustering

 K-Means

 Agglomerative

