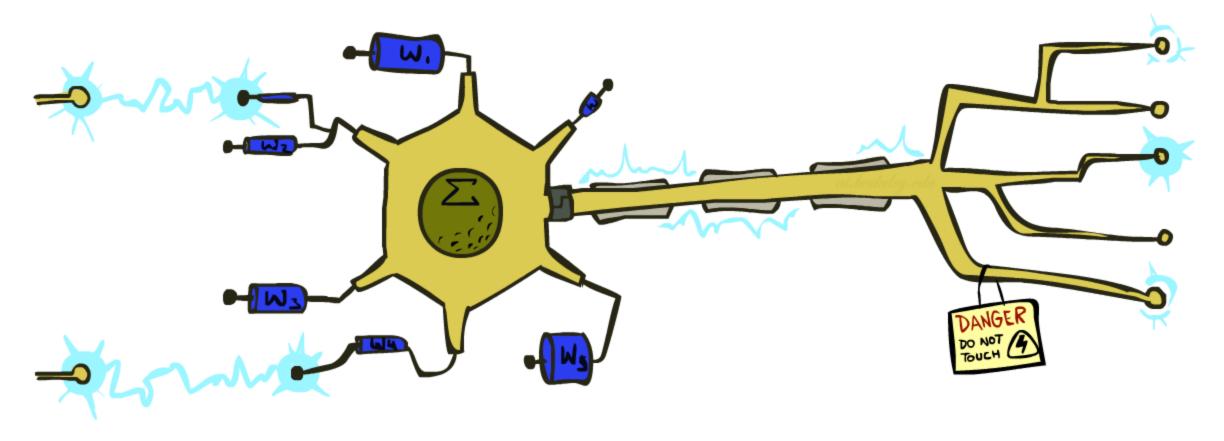
CSCI 446: Artificial Intelligence

Perceptrons



Instructor: Michele Van Dyne

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Outline

- Error Driven Classification
- Linear Classifiers
- Weight Updates
- Improving the Perceptron

Error-Driven Classification

Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just \$99.99* - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to

http://www.amazon.com/apparel

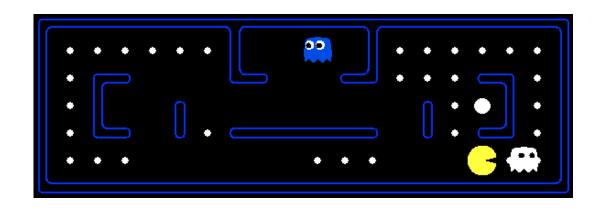
and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors

- Problem: there's still spam in your inbox
- Need more features words aren't enough!
 - Have you emailed the sender before?
 - Have 1M other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
- Naïve Bayes models can incorporate a variety of features, but tend to do best in homogeneous cases (e.g. all features are word occurrences)

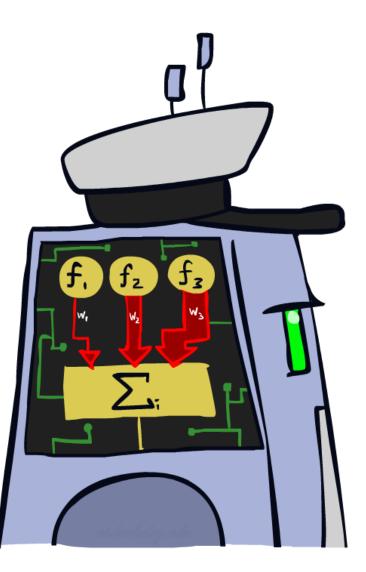
Later On...

Google	
Google Search I'm Feeling Lucky	Advanced Search Language Tools
Advertising Programs - Business Solutions - About Google ©2009 - Privacy	

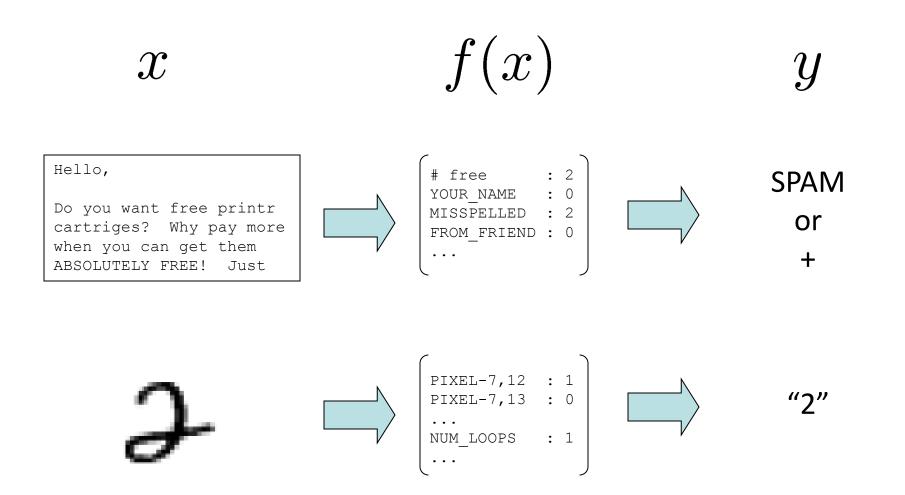


Decision Problems

Linear Classifiers

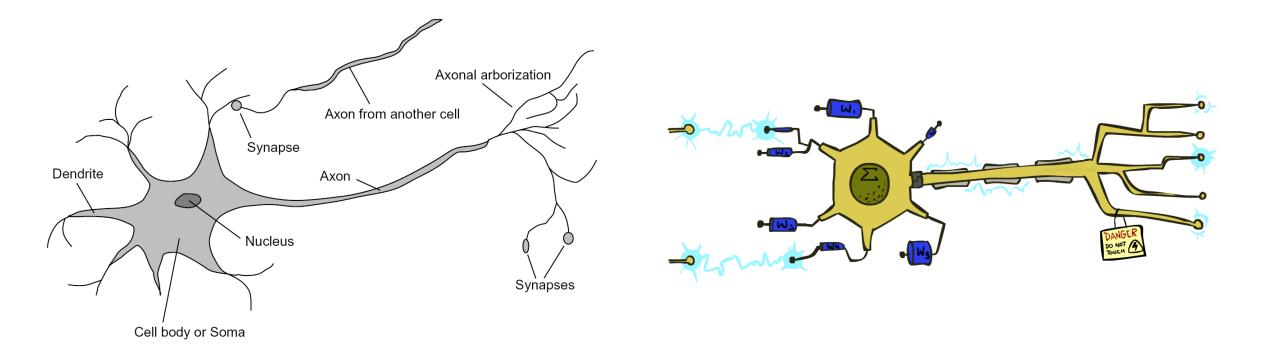


Feature Vectors



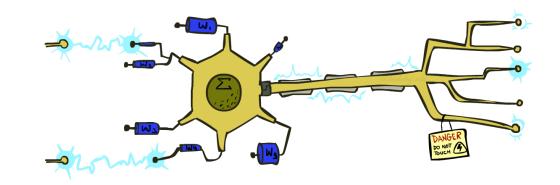
Some (Simplified) Biology

Very loose inspiration: human neurons



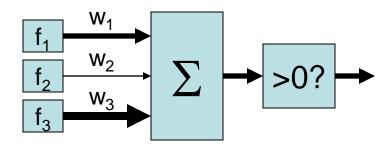
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation



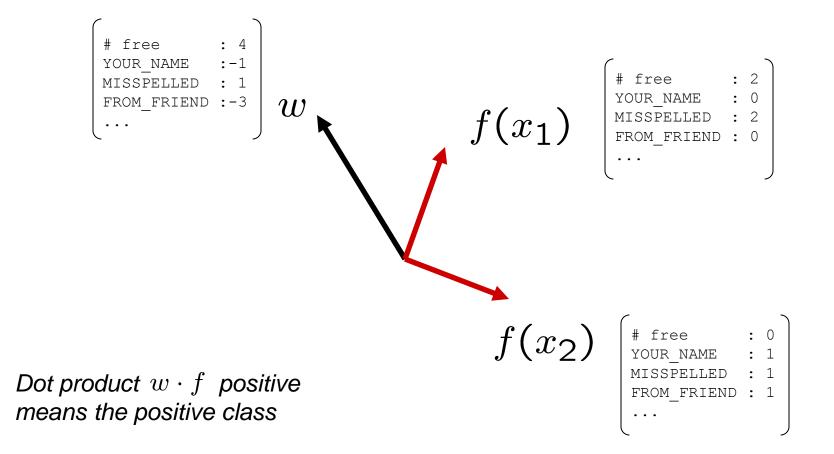
activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

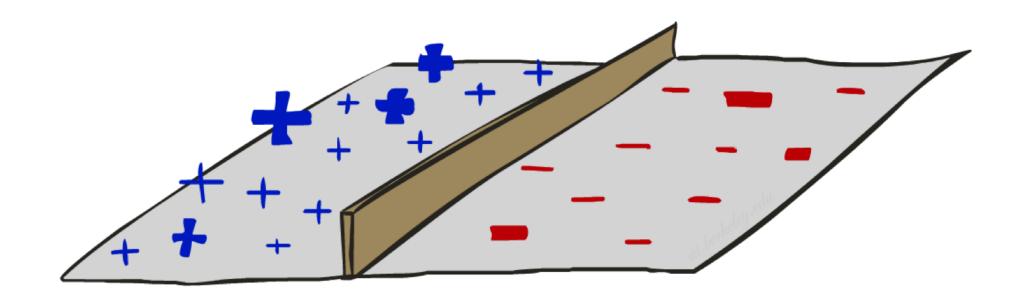


Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

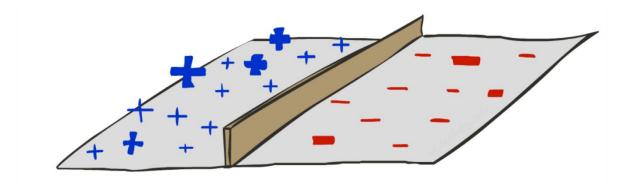


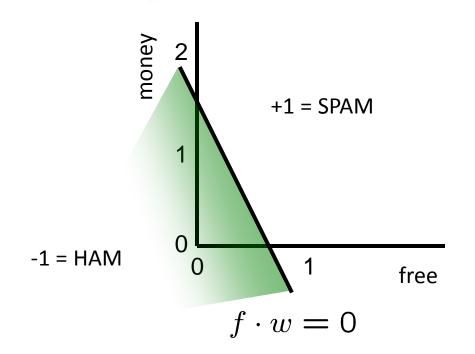
Decision Rules



Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1





w

-		
BIAS	:	-3
free	:	4
money	:	2
• • •		

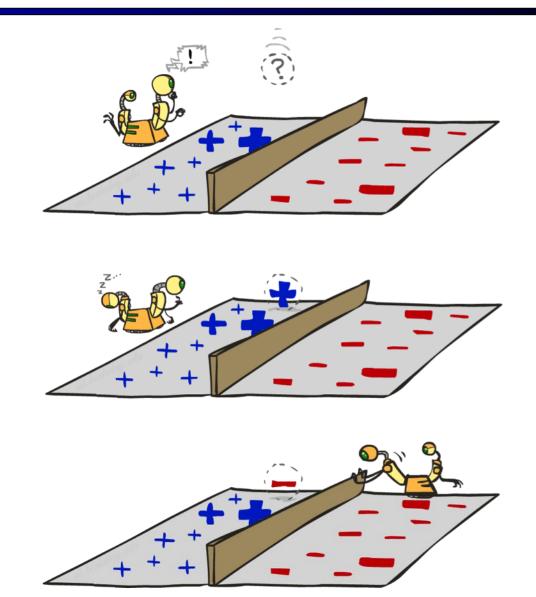
Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector



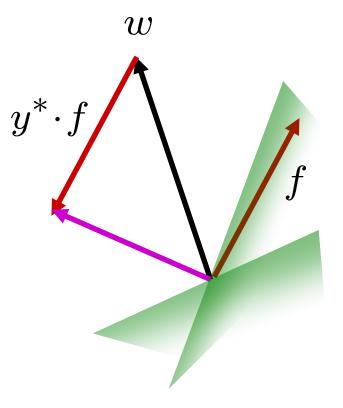
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

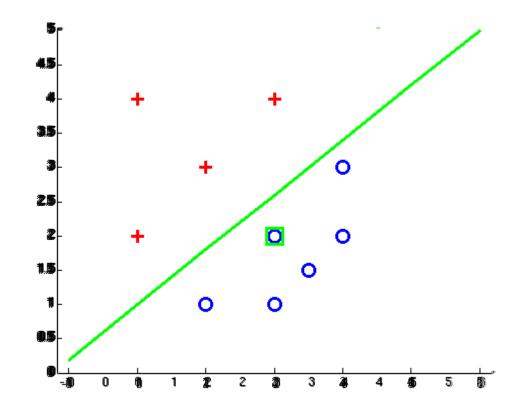
- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$



Examples: Perceptron

Separable Case



Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

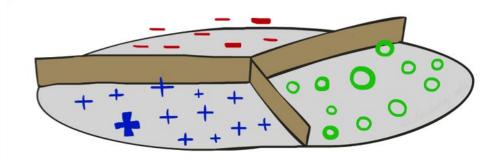
 w_y

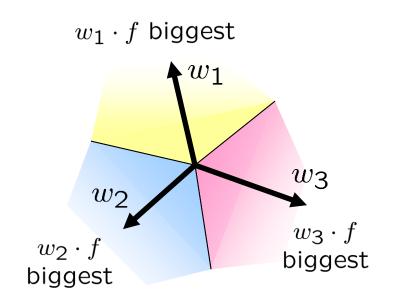
Score (activation) of a class y:

 $w_y \cdot f(x)$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} w_y \cdot f(x)$$





Binary = multiclass where the negative class has weight zero

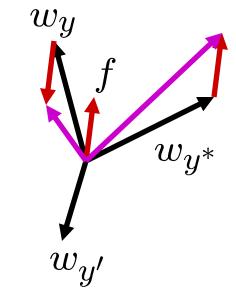
Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

 $y = \arg \max_y w_y \cdot f(x)$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$



Example: Multiclass Perceptron

- "win the vote"
- "win the election"
- "win the game"

 w_{SPORTS}

BIAS	•	1	
win	:	0	
game	:	0	
vote	:	0	
the	•	0	
•••			

*w*_{POLITICS}

w_{TECH}

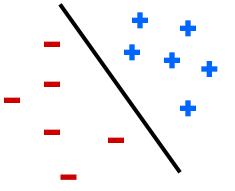
BIAS	:	0	
win	:	0	
game	:	0	
vote	:	0	
the	:	0	
•••			

BIAS	:	0
win	:	0
game	:	0
vote	:	0
the	:	0
•••		

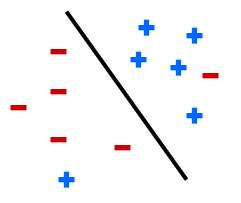
Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

mistakes
$$< \frac{k}{\delta^2}$$

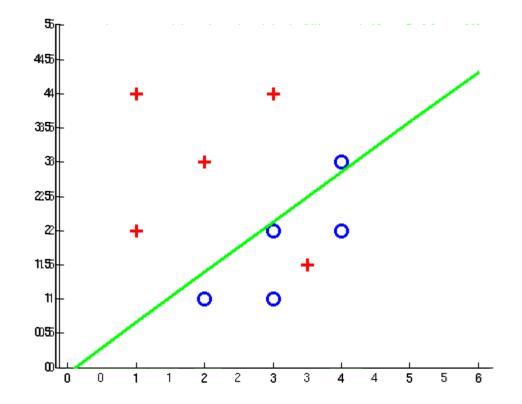


Non-Separable

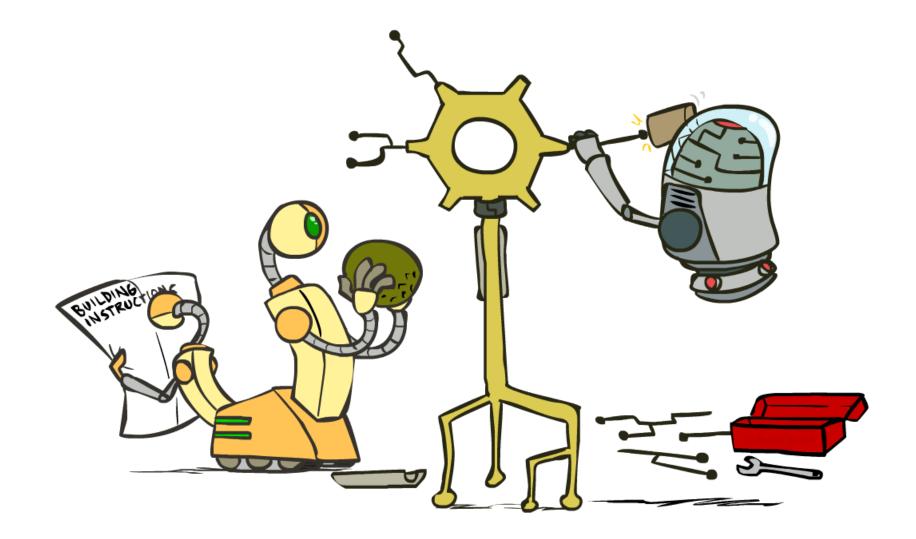


Examples: Perceptron

Non-Separable Case



Improving the Perceptron

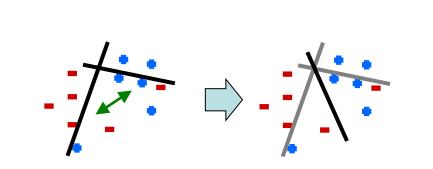


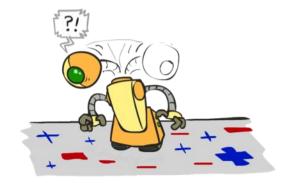
Problems with the Perceptron

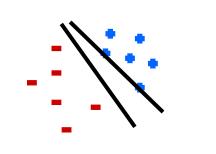
- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

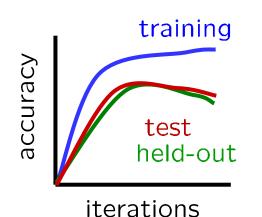
 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting









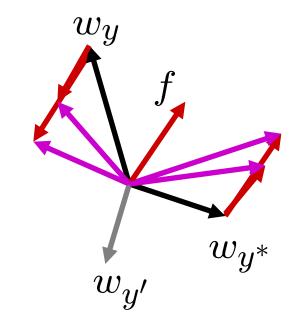
Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to w

$$\min_{w} \frac{1}{2} \sum_{y} ||w_y - w'_y||^2$$
$$w_{y^*} \cdot f(x) \ge w_y \cdot f(x) + 1$$

The +1 helps to generalize

* Margin Infused Relaxed Algorithm

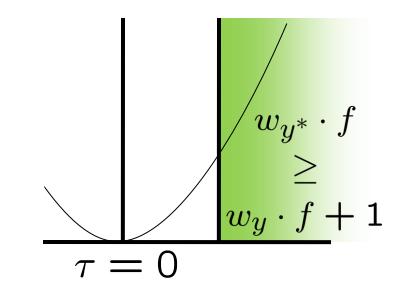


Guessed y instead of y^* on example x with features f(x)

$$w_y = w'_y - \tau f(x)$$
$$w_{y^*} = w'_{y^*} + \tau f(x)$$

Minimum Correcting Update

$$w_y = w'_y - \tau f(x)$$
$$w_{y^*} = w'_{y^*} + \tau f(x)$$

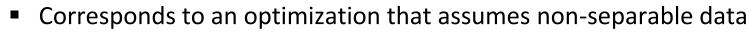


min not T=0, or would not have made an error, so min will be where equality holds

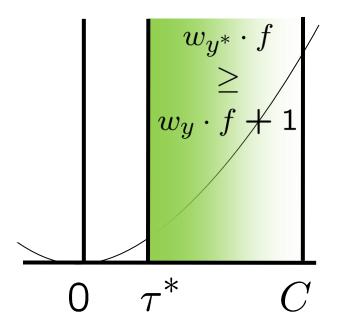
Maximum Step Size

- In practice, it's also bad to make updates that are too large
 - Example may be labeled incorrectly
 - You may not have enough features
 - Solution: cap the maximum possible value of τ with some constant C

$$\tau^* = \min\left(\frac{(w'_y - w'_{y^*}) \cdot f + 1}{2f \cdot f}, C\right)$$

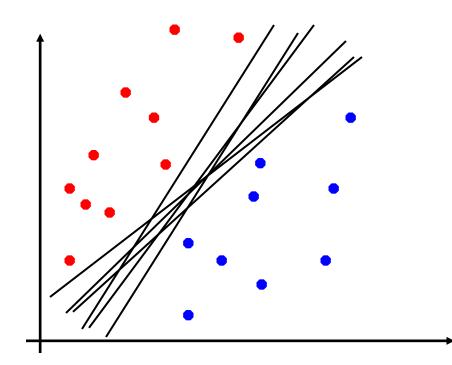


- Usually converges faster than perceptron
- Usually better, especially on noisy data



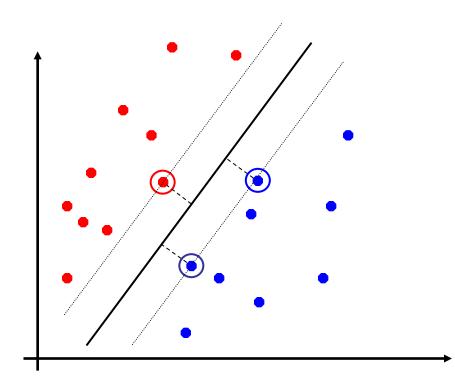
Linear Separators

Which of these linear separators is optimal?



Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Only support vectors matter; other training examples are ignorable
- Support vector machines (SVMs) find the separator with max margin
- Basically, SVMs are MIRA where you optimize over all examples at once



$$\min_{w} \frac{1}{2} ||w - w'||^2$$
$$w_{y^*} \cdot f(x_i) \ge w_y \cdot f(x_i) + 1$$

SVM

$$\min_{w} \frac{1}{2} ||w||^2$$

$$\forall i, y \ w_{y^*} \cdot f(x_i) \ge w_y \cdot f(x_i) + 1$$

Classification: Comparison

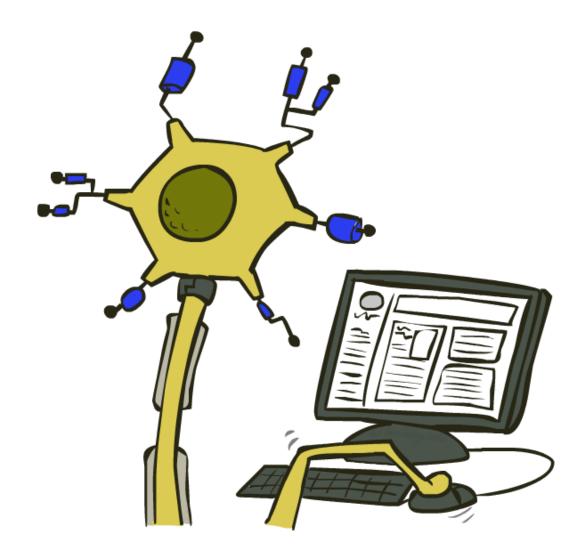
Naïve Bayes

- Builds a model training data
- Gives prediction probabilities
- Strong assumptions about feature independence
- One pass through data (counting)

Perceptrons / MIRA:

- Makes less assumptions about data
- Mistake-driven learning
- Multiple passes through data (prediction)
- Often more accurate

Web Search



Extension: Web Search

- Information retrieval:
 - Given information needs, produce information
 - Includes, e.g. web search, question answering, and classic IR
- Web search: not exactly classification, but rather ranking

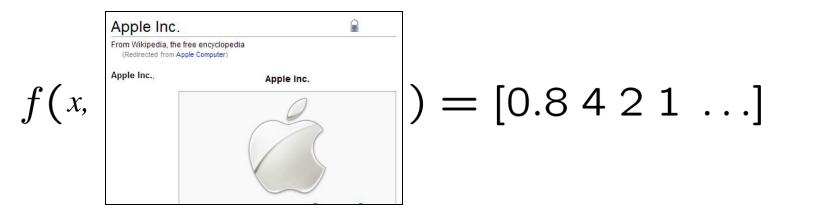
x = "Apple Computers"

Apple	
From Wikipedia, the free encyclopedia	
This article is about the fruit. For the see Apple Inc For other uses, see	e electronics and software company Apple (disambiguation).
The apple is the pomaceous fruit of	Apple
the apple tree, species Malus domestica in the rose family	A 10 -488
Rosaceae. It is one of the most widely	· · · · · ·
cultivated tree fruits. The tree is small	Mr. Mr.
and deciduous, reaching 3 to 12 metres (9.8 to 39 ft) tall, with a broad,	1 State 1
often densely twiggy crown. ^[1] The	
leaves are alternately arranged simple	1010 - 31A

Feature-Based Ranking

x = "Apple Computer"

) = [0.3500...]



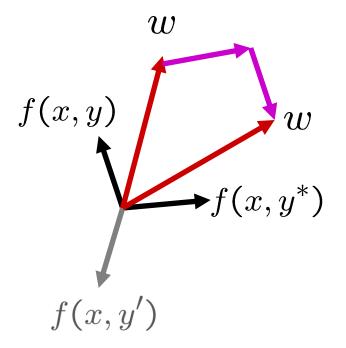
Perceptron for Ranking

- Inputs x
- Candidates y
- Many feature vectors: f(x, y)
- One weight vector: w
 - Prediction:

 $y = \arg \max_y w \cdot f(x, y)$

Update (if wrong):

$$w = w + f(x, y^*) - f(x, y)$$

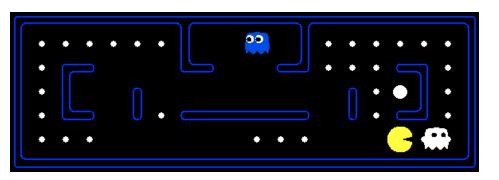


Apprenticeship



Pacman Apprenticeship!

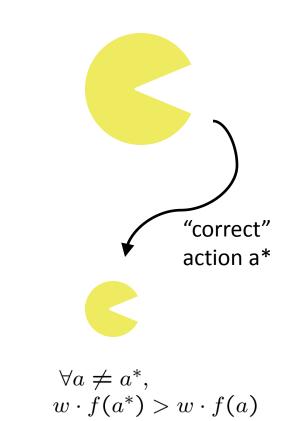
Examples are states s



- Candidates are pairs (s,a)
- "Correct" actions: those taken by expert
- Features defined over (s,a) pairs: f(s,a)
- Score of a q-state (s,a) given by:

$$w \cdot f(s, a)$$

How is this VERY different from reinforcement learning?



Summary

- Error Driven Classification
- Linear Classifiers
- Weight Updates
- Improving the Perceptron

