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Probabilistic Models 

 Models describe how (a portion of) the world works 
 
 Models are always simplifications 

 May not account for every variable 
 May not account for all interactions between variables 
 “All models are wrong; but some are useful.” 

     – George E. P. Box 
 

 

 What do we do with probabilistic models? 
 We (or our agents) need to reason about unknown 

variables, given evidence 
 Example: explanation (diagnostic reasoning) 
 Example: prediction (causal reasoning) 
 Example: value of information 



Independence 



 Two variables are independent if: 
 
 
 

 This says that their joint distribution factors into a product two 
simpler distributions 

 

 Another form: 

 
   

 

 We write:  
 

 Independence is a simplifying modeling assumption 
 

 Empirical joint distributions: at best “close” to independent 
 

 What could we assume for {Weather, Traffic, Cavity, Toothache}? 

Independence 



Example: Independence? 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

T W P 

hot sun 0.3 

hot rain 0.2 

cold sun 0.3 

cold rain 0.2 

T P 

hot 0.5 

cold 0.5 

W P 

sun 0.6 

rain 0.4 



Example: Independence 

 N fair, independent coin flips: 

H 0.5 

T 0.5 

H 0.5 

T 0.5 

H 0.5 

T 0.5 



Conditional Independence 

 P(Toothache, Cavity, Catch) 
 

 If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache: 
 P(+catch | +toothache, +cavity) = P(+catch | +cavity) 

 
 The same independence holds if I don’t have a cavity: 

 P(+catch | +toothache, -cavity) = P(+catch| -cavity) 

 
 Catch is conditionally independent of Toothache given Cavity: 

 P(Catch | Toothache, Cavity) = P(Catch | Cavity) 

 

 Equivalent statements: 
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity) 
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 
 One can be derived from the other easily 



Conditional Independence 

 Unconditional (absolute) independence very rare (why?) 
 

 Conditional independence is our most basic and robust form 
of knowledge about uncertain environments. 
 

 X is conditionally independent of Y given Z 
 

      if and only if: 
 
 
      or, equivalently, if and only if 

 
 
 

 
 



Conditional Independence 

 What about this domain: 
 

 Traffic 
 Umbrella 
 Raining 

 
 



Conditional Independence 

 What about this domain: 
 

 Fire 
 Smoke 
 Alarm 

 
 



Conditional Independence and the Chain Rule 

 Chain rule:  
 

 

 Trivial decomposition: 
 

 
 

 
 

 With assumption of conditional independence: 
 
 
 
 

 Bayes’nets / graphical models help us express conditional independence assumptions 
 



Ghostbusters Chain Rule 

 Each sensor depends only 
on where the ghost is 
 

 That means, the two sensors are 
conditionally independent, given the 
ghost position 
 

 T: Top square is red 
B: Bottom square is red 
G: Ghost is in the top 

 
 Givens: 
 P( +g ) = 0.5 
 P(  -g ) = 0.5 
 P( +t  | +g ) = 0.8 

P( +t  |  -g ) = 0.4 
P( +b | +g ) = 0.4 
P( +b |  -g ) = 0.8 
 
 
 

P(T,B,G) = P(G) P(T|G) P(B|G) 

T B G P(T,B,G) 

+t +b +g 0.16 

+t +b -g 0.16 

+t -b +g 0.24 

+t -b -g 0.04 

-t +b +g 0.04 

-t +b -g 0.24 

-t -b +g 0.06 

-t -b -g 0.06 



Bayes’Nets: Big Picture 



Bayes’ Nets: Big Picture 

 Two problems with using full joint distribution tables 
as our probabilistic models: 
 Unless there are only a few variables, the joint is WAY too 

big to represent explicitly 
 Hard to learn (estimate) anything empirically about more 

than a few variables at a time 

 
 Bayes’ nets: a technique for describing complex joint 

distributions (models) using simple, local 
distributions (conditional probabilities) 
 More properly called graphical models 
 We describe how variables locally interact 
 Local interactions chain together to give global, indirect 

interactions 
 For about 10 min, we’ll be vague about how these 

interactions are specified 



Example Bayes’ Net: Insurance 



Example Bayes’ Net: Car 



Graphical Model Notation 

 
 Nodes: variables (with domains) 

 Can be assigned (observed) or unassigned 
(unobserved) 

 
 Arcs: interactions 

 Similar to CSP constraints 
 Indicate “direct influence” between variables 
 Formally: encode conditional independence 

(more later) 

 
 For now: imagine that arrows mean 

direct causation (in general, they don’t!) 
 



Example: Coin Flips 

 N independent coin flips 

 

 

 

 

 

 

 No interactions between variables: absolute independence 

 

 

 

 

 

X1 X2 Xn 



Example: Traffic 

 Variables: 
 R: It rains 

 T: There is traffic 

 

 Model 1: independence 

 

 
 

 

 

 
 

 Why is an agent using model 2 better? 

 

R 

T 

R 

T 

 

 
 

 

 Model 2: rain causes traffic 

 



 Let’s build a causal graphical model! 

 Variables 
 T: Traffic 

 R: It rains 

 L: Low pressure 

 D: Roof drips 

 B: Ballgame 

 C: Cavity 
 

Example: Traffic II 



Example: Alarm Network 

 Variables 
 B: Burglary 

 A: Alarm goes off 

 M: Mary calls 

 J: John calls 

 E: Earthquake! 



Bayes’ Net Semantics 



Bayes’ Net Semantics 

 A set of nodes, one per variable X 
 

 

 A directed, acyclic graph 
 

 

 A conditional distribution for each node 
 

 A collection of distributions over X, one for each 
combination of parents’ values 
 
 
 

 CPT: conditional probability table 
 

 Description of a noisy “causal” process 
 

 

A1 

X 

An 

A Bayes net = Topology (graph) + Local Conditional Probabilities 



Probabilities in BNs 

 Bayes’ nets implicitly encode joint distributions 
 

 As a product of local conditional distributions 
 

 To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together: 
 
 
 

 Example: 
 
 

 



Probabilities in BNs 

 Why are we guaranteed that setting 
 

 

 
 

    results in a proper joint distribution?   
 

 

 Chain rule (valid for all distributions):  
 

 Assume conditional independences:  
 

       Consequence: 
 

 

 Not every BN can represent every joint distribution 
 

 The topology enforces certain conditional independencies 



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs. 

Example: Coin Flips 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

X1 X2 Xn 



Example: Traffic 

R 

T 

+r 1/4 

-r 3/4 

 +r +t 3/4 

-t 1/4 

-r +t 1/2 

-t 1/2 



Example: Alarm Network 

Burglary Earthqk 

Alarm 

John 
calls 

Mary 
calls 

B P(B) 

+b 0.001 

-b 0.999 

E P(E) 

+e 0.002 

-e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 

+b +e -a 0.05 

+b -e +a 0.94 

+b -e -a 0.06 

-b +e +a 0.29 

-b +e -a 0.71 

-b -e +a 0.001 

-b -e -a 0.999 

A J P(J|A) 

+a +j 0.9 

+a -j 0.1 

-a +j 0.05 

-a -j 0.95 

A M P(M|A) 

+a +m 0.7 

+a -m 0.3 

-a +m 0.01 

-a -m 0.99 



Example: Traffic 

 Causal direction 

R 

T 

+r 1/4 

-r 3/4 

+r +t 3/4 

-t 1/4 

-r +t 1/2 

-t 1/2 

+r +t 3/16 

+r -t 1/16 

-r +t 6/16 

-r -t 6/16 



Example: Reverse Traffic 

 Reverse causality? 

T 

R 

+t 9/16 

-t 7/16 

+t +r 1/3 

-r 2/3 

-t +r 1/7 

-r 6/7 

+r +t 3/16 

+r -t 1/16 

-r +t 6/16 

-r -t 6/16 



Causality? 

 When Bayes’ nets reflect the true causal patterns: 
 

 Often simpler (nodes have fewer parents) 
 Often easier to think about 
 Often easier to elicit from experts 

 

 BNs need not actually be causal 
 

 Sometimes no causal net exists over the domain 
(especially if variables are missing) 

 E.g. consider the variables Traffic and Drips 
 End up with arrows that reflect correlation, not causation 

 

 What do the arrows really mean? 
 

 Topology may happen to encode causal structure 
 Topology really encodes conditional independence 



Bayes’ Nets 

 So far: how a Bayes’ net encodes a joint 
distribution 
 

 Next: how to answer queries about that 
distribution 
 Today:  

 First assembled BNs using an intuitive notion of 
conditional independence as causality 

 Then saw that key property is conditional independence 

 Main goal: answer queries about conditional 
independence and influence  
 

 After that: how to answer numerical queries 
(inference) 
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