
CSCI 446: Artificial Intelligence 
 Particle Filters and Applications of HMMs 

Instructor: Michele Van Dyne 

 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.] 



Today 

 HMMs 

 Particle filters 

 Demo bonanza! 

 Most-likely-explanation queries 

 

 Applications: 

 “I Know Why You Went to the Clinic: Risks and Realization of HTTPS 
Traffic Analysis” 

 Speech recognition 

 

 

 

 

 



Recap: Reasoning Over Time 

 Markov models 

 

 

 

 

 Hidden Markov models 
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[Demo: Ghostbusters Markov Model (L15D1)] 



Recap: Filtering 
 

Elapse time: compute P( Xt | e1:t-1 ) 
 
 
 
Observe: compute P( Xt | e1:t ) 
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[Demo: Ghostbusters Exact Filtering (L15D2)] 



Particle Filtering 



Particle Filtering 
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 Filtering: approximate solution 
 

 Sometimes |X| is too big to use exact inference 
 |X| may be too big to even store B(X) 
 E.g. X is continuous 

 

 Solution: approximate inference 
 Track samples of X, not all values 
 Samples are called particles 
 Time per step is linear in the number of samples 
 But: number needed may be large 
 In memory: list of particles, not states 

 

 This is how robot localization works in practice 
 

 Particle is just new name for sample 



Representation: Particles 

 Our representation of P(X) is now a list of N particles (samples) 
 Generally, N << |X| 

 Storing map from X to counts would defeat the point 

 

 P(x) approximated by number of particles with value x 
 So, many x may have P(x) = 0!  

 More particles, more accuracy 

 

 For now, all particles have a weight of 1 
 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3) 



Particle Filtering: Elapse Time 

 Each particle is moved by sampling its next 
position from the transition model 

 

 

 

 This is like prior sampling – samples’ frequencies 
reflect the transition probabilities 

 

 Here, most samples move clockwise, but some move in 
another direction or stay in place 

 

 

 This captures the passage of time 
 If enough samples, close to exact values before and 

after (consistent) 

 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3) 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 



 Slightly trickier: 
 

 Don’t sample observation, fix it 
 

 Similar to likelihood weighting, downweight 
samples based on the evidence 

 

 

 

 
 

 As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e)) 

Particle Filtering: Observe 

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 



Particle Filtering: Resample 

 Rather than tracking weighted samples, we 
resample 

 

 N times, we choose from our weighted sample 
distribution (i.e. draw with replacement) 

 

 This is equivalent to renormalizing the 
distribution 

 

 Now the update is complete for this time step, 
continue with the next one 

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2) 



Recap: Particle Filtering 

 Particles: track samples of states rather than an explicit distribution 

 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3) 

Elapse Weight Resample 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 

     Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2) 

[Demos: ghostbusters particle filtering (L15D3,4,5)] 



Robot Localization 

 In robot localization: 
 We know the map, but not the robot’s position 

 Observations may be vectors of range finder readings 

 State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X) 

 Particle filtering is a main technique 

 
 



Particle Filter Localization (Sonar) 

[Video: global-sonar-uw-annotated.avi] 



Particle Filter Localization (Laser) 

[Video: global-floor.gif] 



Robot Mapping 

 SLAM: Simultaneous Localization And Mapping 
 We do not know the map or our location 

 State consists of position AND map! 

 Main techniques: Kalman filtering (Gaussian HMMs) 
and particle methods 

 

DP-SLAM, Ron Parr 

[Demo: PARTICLES-SLAM-mapping1-new.avi] 



Particle Filter SLAM – Video 1 

[Demo: PARTICLES-SLAM-mapping1-new.avi] 



Particle Filter SLAM – Video 2 

[Demo: PARTICLES-SLAM-fastslam.avi] 



Dynamic Bayes Nets 



Dynamic Bayes Nets (DBNs) 

 We want to track multiple variables over time, using 
multiple sources of evidence 

 

 Idea: Repeat a fixed Bayes net structure at each time 
 

 Variables from time t can condition on those from t-1 

 

 

 

 

 

 
 

 Dynamic Bayes nets are a generalization of HMMs 
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[Demo: pacman sonar ghost DBN model (L15D6)] 



DBN Particle Filters 

 A particle is a complete sample for a time step 
 

 Initialize: Generate prior samples for the t=1 Bayes net 

 Example particle: G1
a = (3,3) G1

b = (5,3)  
 

 Elapse time: Sample a successor for each particle  

 Example successor: G2
a = (2,3) G2

b = (6,3) 
 

 Observe: Weight each entire sample by the likelihood of the evidence conditioned on 
the sample 

 Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b )  
 

 Resample: Select prior samples (tuples of values) in proportion to their likelihood 
 



Most Likely Explanation 

 



HMMs: MLE Queries 

 HMMs defined by 
 States X 
 Observations E 
 Initial distribution: 
 Transitions: 
 Emissions: 

 

 
 New query: most likely explanation: 

 
 New method: the Viterbi algorithm 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 



State Trellis 

 State trellis: graph of states and transitions over time 

 

 

 

 

 

 Each arc represents some transition 

 Each arc has weight 

 Each path is a sequence of states 

 The product of weights on a path is that sequence’s probability along with the evidence 

 Forward algorithm computes sums of paths, Viterbi computes best paths 
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Forward / Viterbi Algorithms 
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AI in the News 

I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis 
Brad Miller, Ling Huang, A. D. Joseph, J. D. Tygar (UC Berkeley) 
 



Challenge 

 Setting 

 User we want to spy on use HTTPS to browse the internet 

 Measurements 

 IP address 

 Sizes of packets coming in 

 Goal 

 Infer browsing sequence of that user 

 

 E.g.: medical, financial, legal, … 



HMM 

 Transition model 

 Probability distribution over links on the current page + some 
probability to navigate to any other page on the site 

 

 Noisy observation model due to traffic variations 

 Caching 

 Dynamically generated content 

 User-specific content, including cookies 

 Probability distribution P( packet size | page ) 



Results 

BoG = described approach, others are prior work 
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Speech Recognition 

 



Speech Recognition in Action 

[Video: NLP – ASR tvsample.avi (from Lecture 1)] 



Digitizing Speech 



Speech in an Hour 

 Speech input is an acoustic waveform 

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/ 

   s          p         ee          ch         l        a         b 

“l” to “a” 
transition: 



Spectral Analysis 

 Frequency gives pitch; amplitude gives volume 
 Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec) 

 

 

 

 

 Fourier transform of wave displayed as a spectrogram 
 Darkness indicates energy at each frequency 

 

 

 

             s             p            ee              ch           l          a            b 

Human ear figure: depion.blogspot.com 

http://2.bp.blogspot.com/-9dwlRNvV338/TfyK_J8WGZI/AAAAAAAAARc/PKOCa_pwY4Y/s1600/the-human-ear.gif


Part of [ae] from “lab” 

 Complex wave repeating nine times 
 Plus smaller wave that repeats 4x for 

every large cycle 

 Large wave: freq of 250 Hz (9 times in 
.036 seconds) 

 Small wave roughly 4 times this, or 
roughly 1000 Hz 



Why These Peaks?  

 Articulator process: 
 Vocal cord vibrations create harmonics 

 The mouth is an amplifier 

 Depending on shape of mouth, some harmonics are amplified more than others 



Resonances of the Vocal Tract 

 The human vocal tract as an open tube 
 
 
 
 
 
 
 
 
 

 Air in a tube of a given length will tend to vibrate at 
resonance frequency of tube  

 Constraint: Pressure differential should be maximal at 
(closed) glottal end and minimal at (open) lip end 
 

Closed end Open end 

Length 17.5 cm. 

Figure: W. Barry Speech Science slides 



Figure: Mark Liberman [Demo: speech synthesis ] 

Spectrum Shapes 



Graphs: Ratree Wayland 

Vowel [i] sung at successively higher pitches  

A3 

A4 

A2 

C4 (middle C) 

C3 

F#3 

F#2 



Acoustic Feature Sequence 

 Time slices are translated into acoustic feature vectors (~39 real numbers 
per slice) 
 
 
 
 
 
 
 
 

 These are the observations E, now we need the hidden states X 

……………………………………………..e12e13e14e15e16……….. 



Speech State Space 

 HMM Specification 

 P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind 
of sound) 

 P(X|X’) encodes how sounds can be strung together  

 

 State Space 

 We will have one state for each sound in each word 

 Mostly, states advance sound by sound 

 Build a little state graph for each word and chain them together to form the state 
space X 



States in a Word 

 



Transitions with a Bigram Model 

Figure: Huang et al, p. 618 
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Decoding 

 Finding the words given the acoustics is an HMM inference problem 

 Which state sequence x1:T is most likely given the evidence e1:T? 

 

 

 

 From the sequence x, we can simply read off the words 



Today 

 HMMs 

 Particle filters 

 Demo bonanza! 

 Most-likely-explanation queries 

 

 Applications: 

 “I Know Why You Went to the Clinic:  
Risks and Realization of HTTPS  
Traffic Analysis” 

 Speech recognition 

 

 

 

 

 


