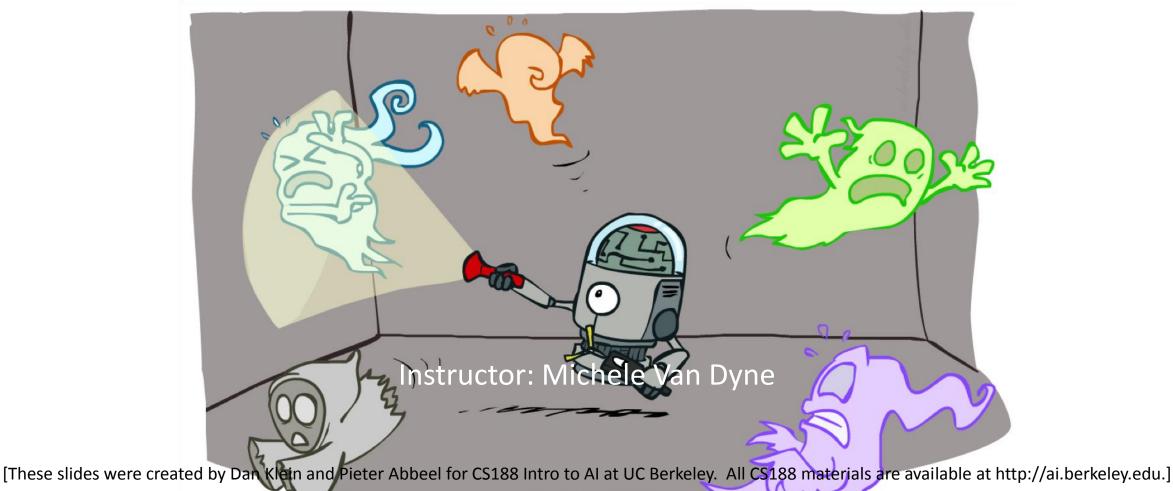
CSCI 446: Artificial Intelligence Particle Filters and Applications of HMMs



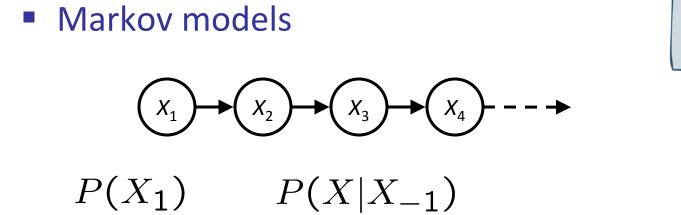
Today

HMMs

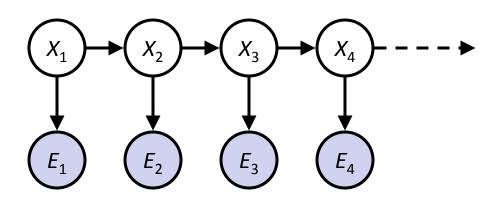
- Particle filters
- Demo bonanza!
- Most-likely-explanation queries
- Applications:
 - "I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis"
 - Speech recognition

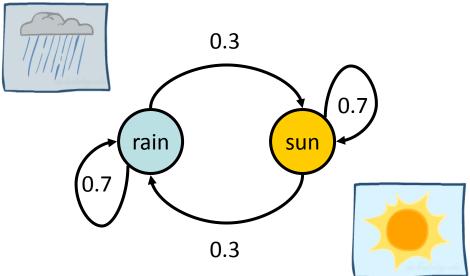
[Demo: Ghostbusters Markov Model (L15D1)]

Recap: Reasoning Over Time



Hidden Markov models





P(E|X)

X	E	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

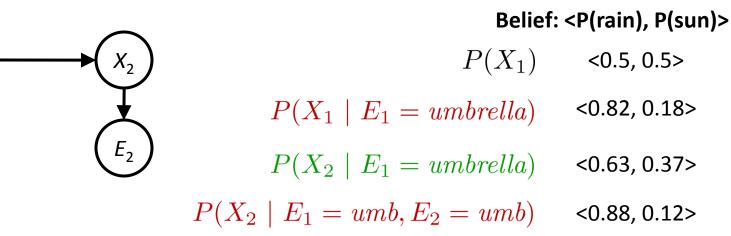
Recap: Filtering

Elapse time: compute P(X_t | e_{1:t-1}) $P(x_t | e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) \cdot P(x_t | x_{t-1})$ Observe: compute P(X_t | e_{1:t}) $P(x_t | e_{1:t}) \propto P(x_t | e_{1:t-1}) \cdot P(e_t | x_t)$

 X_1

 E_1

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01



[Demo: Ghostbusters Exact Filtering (L15D2)]

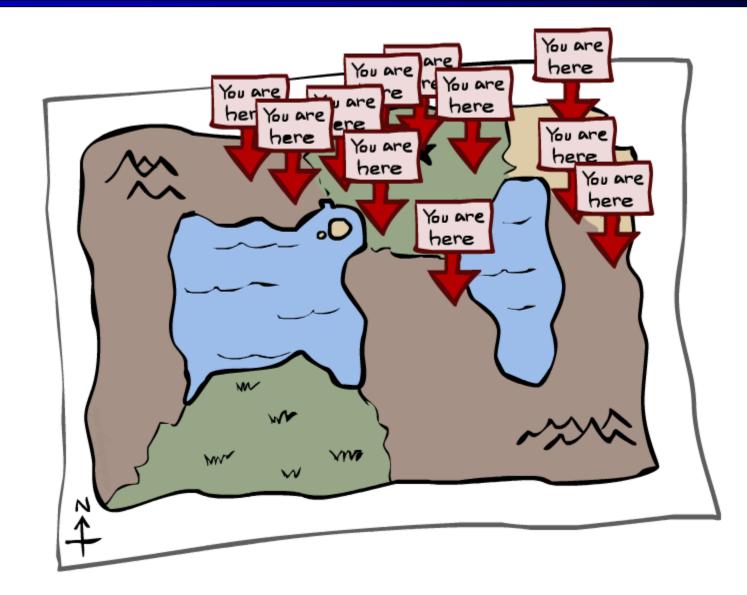
Prior on X_1

Elapse time

Observe

Observe

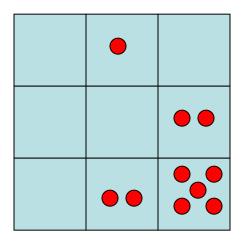
Particle Filtering



Particle Filtering

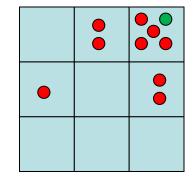
- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

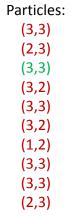
0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5



Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|</p>
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1



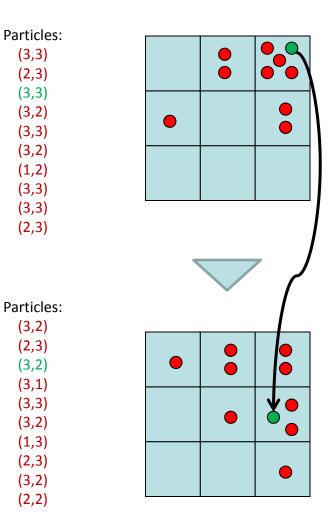


Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)



(3,3)(2,3)(3,3)(3,2)

(3,3)(3,2)(1,2)(3,3)

(3,3) (2,3)

(3,2)(2,3)(3,2)

(3,1)

(3,3)(3,2)

(1,3)

(2,3)(3,2)(2,2)

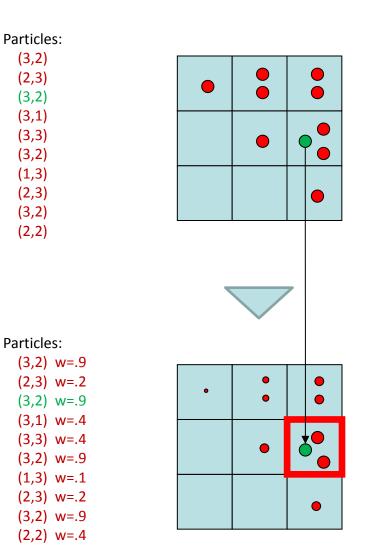
Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x) $B(X) \propto P(e|X)B'(X)$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))



Particle Filtering: Resample

Particles:

(3,2) w=.9

(2,3) w=.2

(3,2) w=.9 (3,1) w=.4 (3,3) w=.4

(3,2) w=.9 (1,3) w=.1

(2,3) w=.2 (3,2) w=.9 (2,2) w=.4

(New) Particles:

(3*,*2) (2*,*2)

(3,2) (2,3)

(3,3) (3,2) (1,3) (2,3) (3,2) (3,2)

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

•	•	
	•	
	•	
	•	

•

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

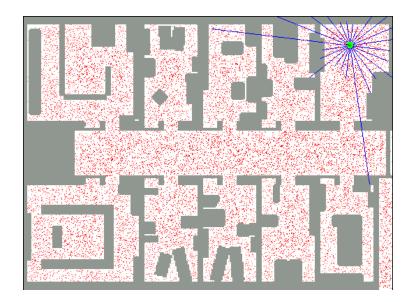
	Elapse	Weight	Resample
Particles:	Particles:	Particles:	(New) Particles:
(3,3)	(3,2)	(3,2) w=.9	(3,2)
(2,3)	(2,3)	(2,3) w=.2	(2,2)
(3,3)	(3,2)	(3,2) w=.9	(3,2)
(3,2)	(3,1)	(3,1) w=.4	(2,3)
(3,3)	(3,3)	(3,3) w=.4	(3,3)
(3,2)	(3,2)	(3,2) w=.9	(3,2)
(1,2)	(1,3)	(1,3) w=.1	(1,3)
(3,3)	(2,3)	(2,3) w=.2	(2,3)
(3,3)	(3,2)	(3,2) w=.9	(3,2)
(2,3)	(2,2)	(2,2) w=.4	(3,2)

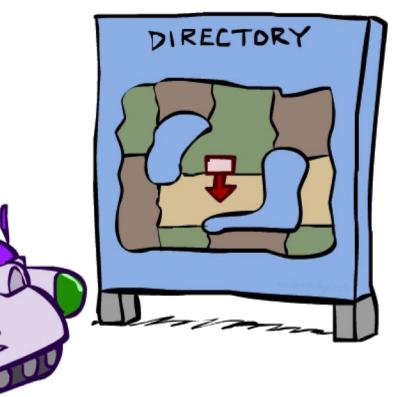
[Demos: ghostbusters particle filtering (L15D3,4,5)]

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

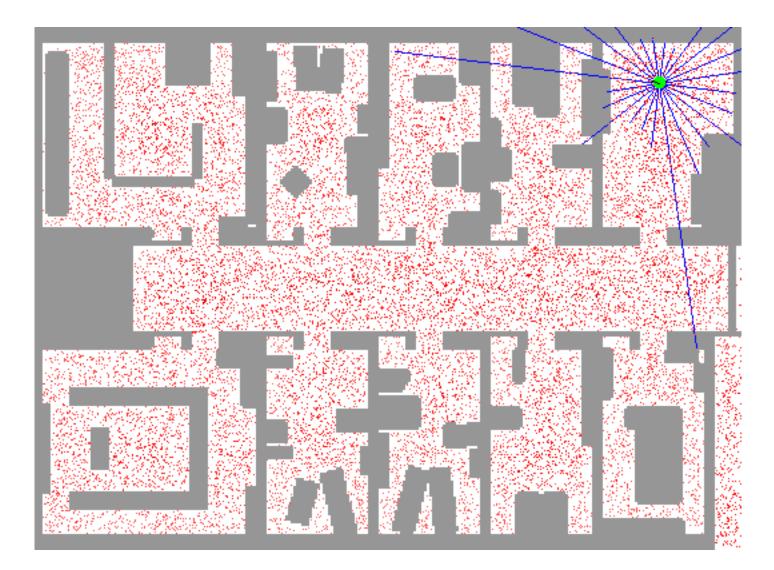




Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

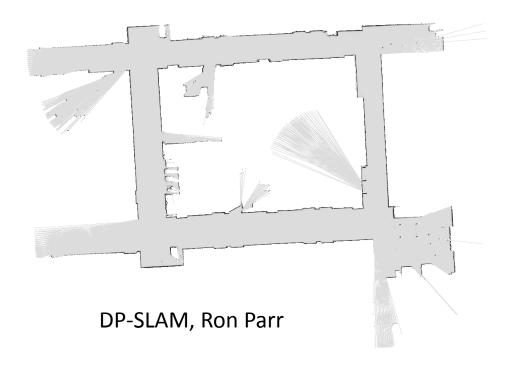
Particle Filter Localization (Laser)

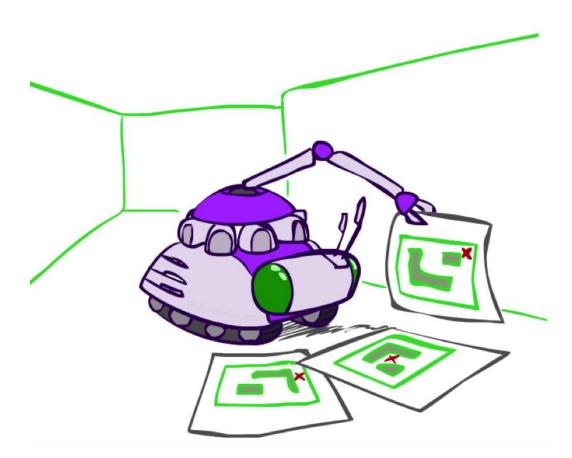


[Video: global-floor.gif]

Robot Mapping

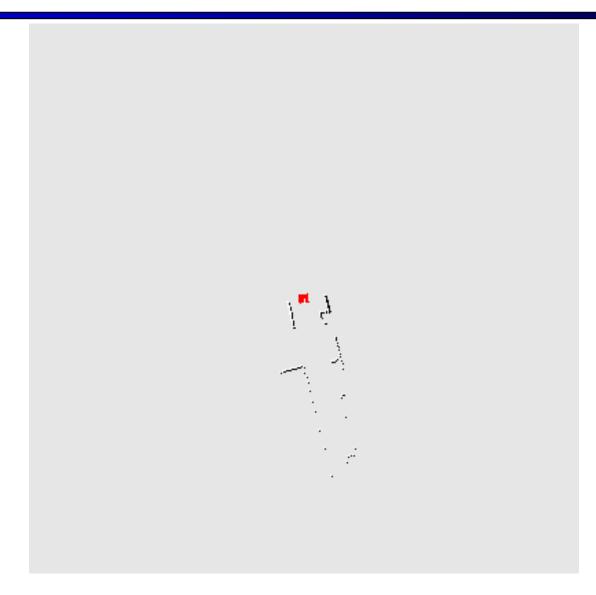
- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods





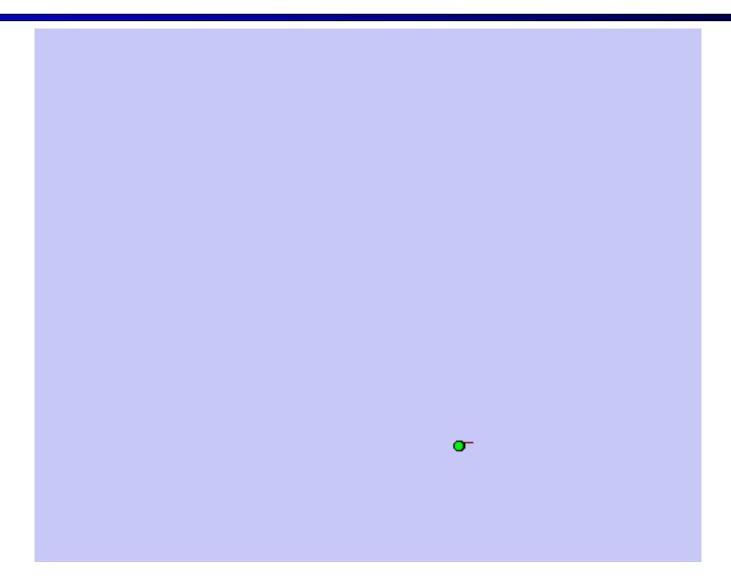
[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1



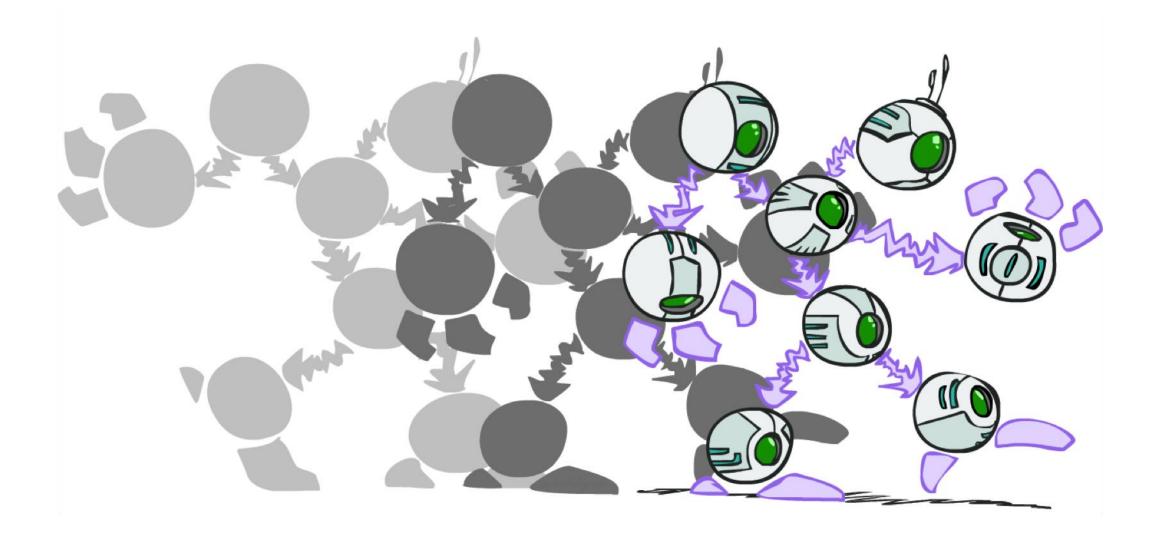
[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 2



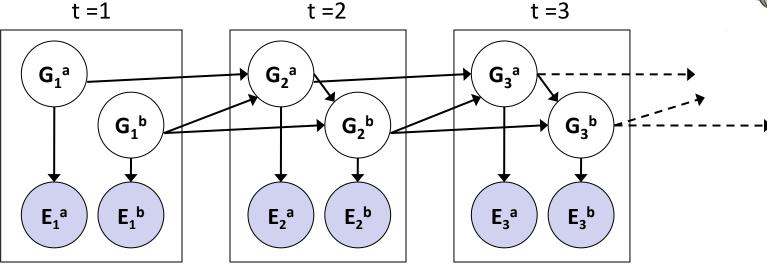
[Demo: PARTICLES-SLAM-fastslam.avi]

Dynamic Bayes Nets

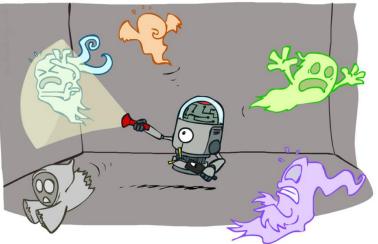


Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1



Dynamic Bayes nets are a generalization of HMMs



[Demo: pacman sonar ghost DBN model (L15D6)]

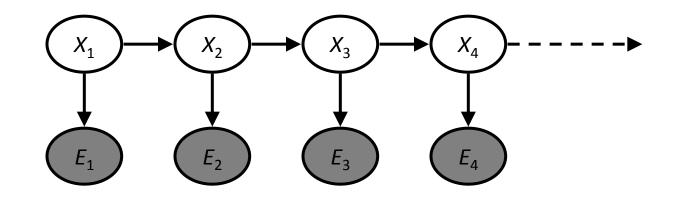
DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: G₁^a = (3,3) G₁^b = (5,3)
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^{a} | G_1^{a}) * P(E_1^{b} | G_1^{b})$
- **Resample:** Select prior samples (tuples of values) in proportion to their likelihood

Most Likely Explanation

HMMs: MLE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X|X_{-1})$
 - Emissions: P(E|X)



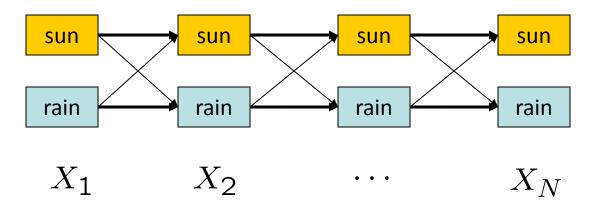
New query: most likely explanation:

 $\underset{x_{1:t}}{\arg\max} P(x_{1:t}|e_{1:t})$

New method: the Viterbi algorithm

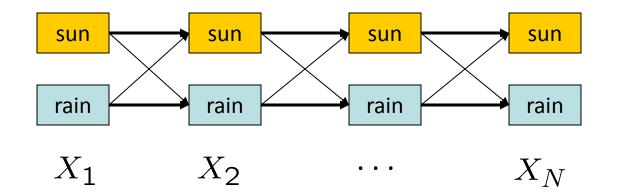
State Trellis

State trellis: graph of states and transitions over time



- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi Algorithms



Forward Algorithm (Sum)

Viterbi Algorithm (Max)

 $f_t[x_t] = P(x_t, e_{1:t})$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$

$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

Al in the News

I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis Brad Miller, Ling Huang, A. D. Joseph, J. D. Tygar (UC Berkeley)

Challenge

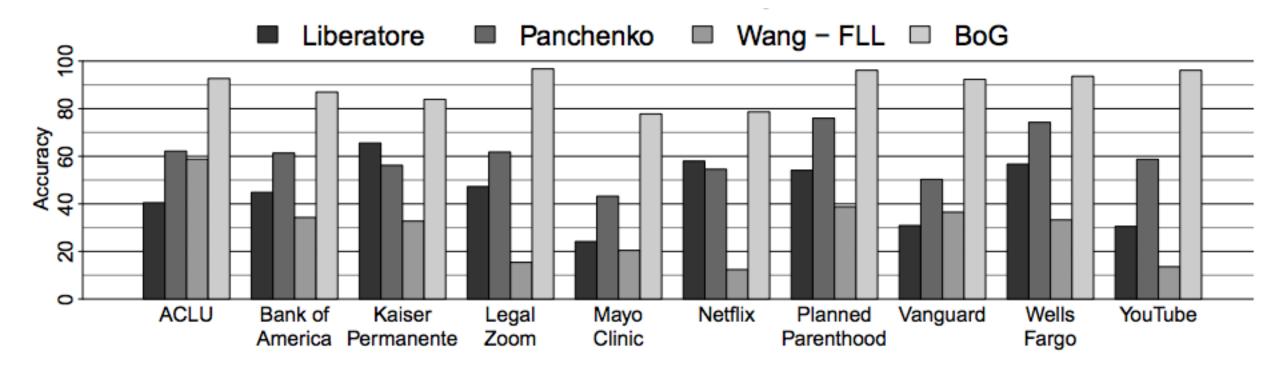
- Setting
 - User we want to spy on use HTTPS to browse the internet
- Measurements
 - IP address
 - Sizes of packets coming in
- Goal
 - Infer browsing sequence of that user
- E.g.: medical, financial, legal, ...

HMM

Transition model

- Probability distribution over links on the current page + some probability to navigate to any other page on the site
- Noisy observation model due to traffic variations
 - Caching
 - Dynamically generated content
 - User-specific content, including cookies
 - \rightarrow Probability distribution P(packet size | page)

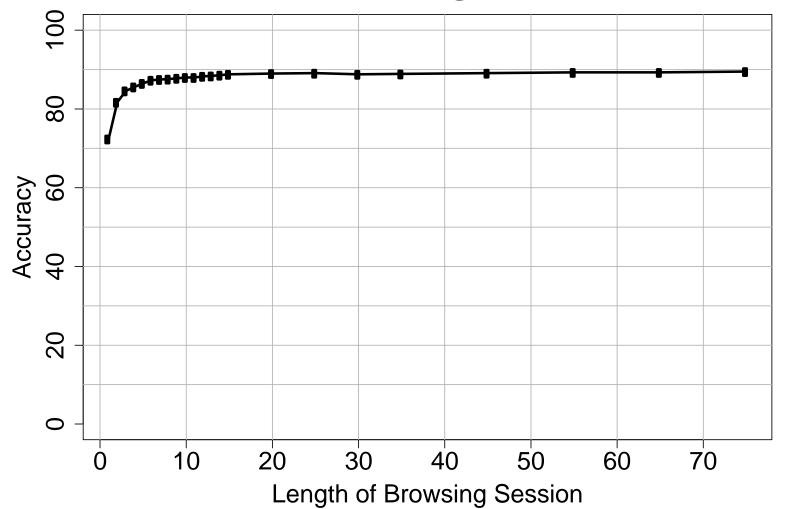
Results



BoG = described approach, others are prior work

Results

Session Length Effect

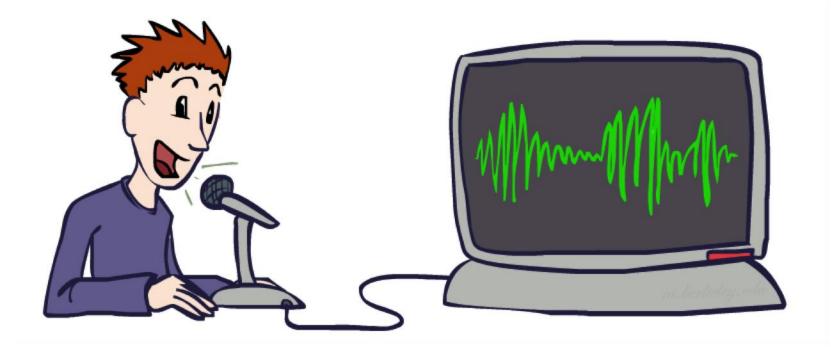


Speech Recognition

Speech Recognition in Action

[Video: NLP – ASR tvsample.avi (from Lecture 1)]

Digitizing Speech



Speech in an Hour

Speech input is an acoustic waveform

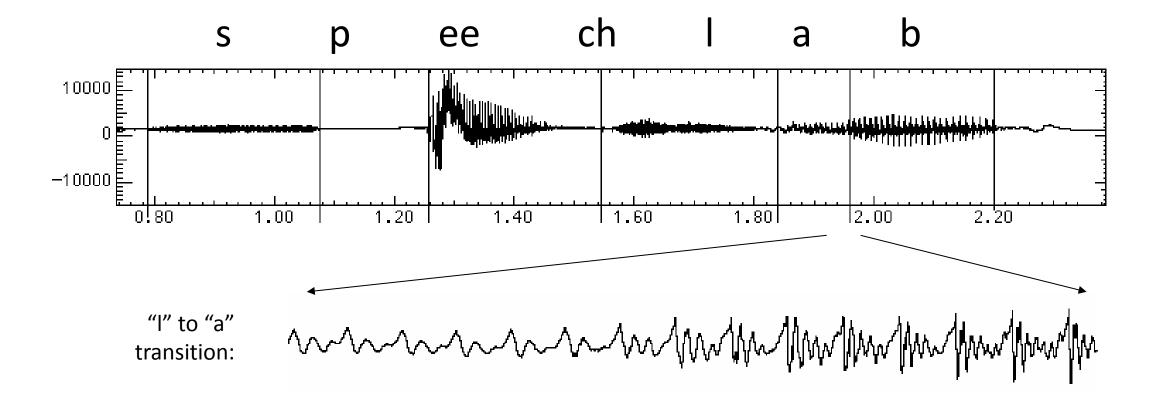
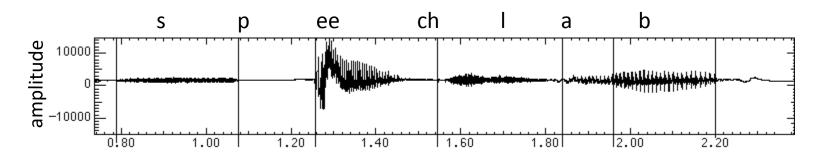


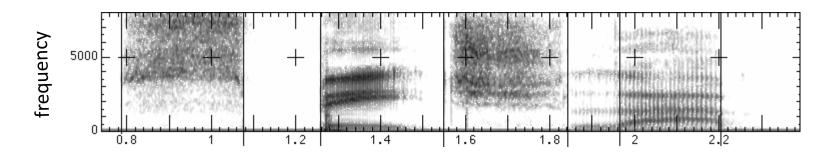
Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

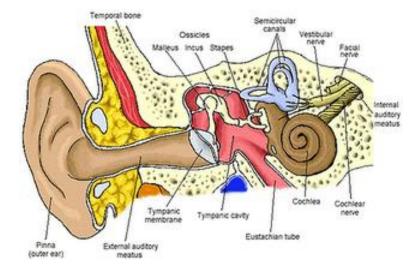
Spectral Analysis

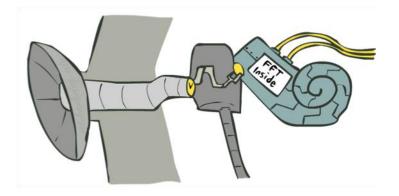
- Frequency gives pitch; amplitude gives volume
 - Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec)



- Fourier transform of wave displayed as a spectrogram
 - Darkness indicates energy at each frequency

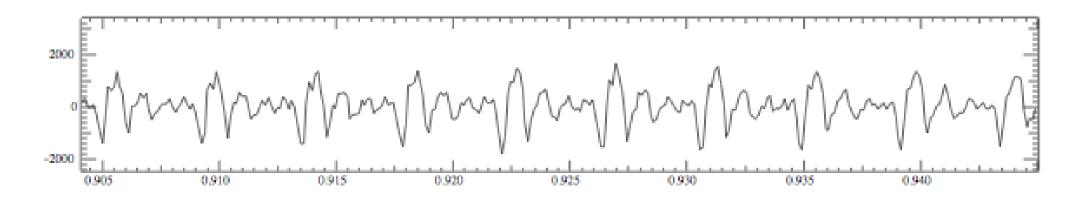






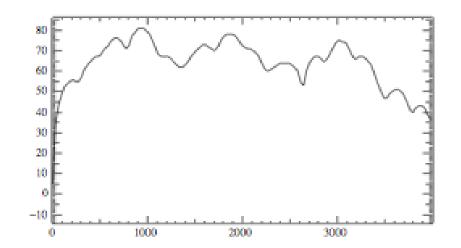
Human ear figure: depion.blogspot.com

Part of [ae] from "lab"



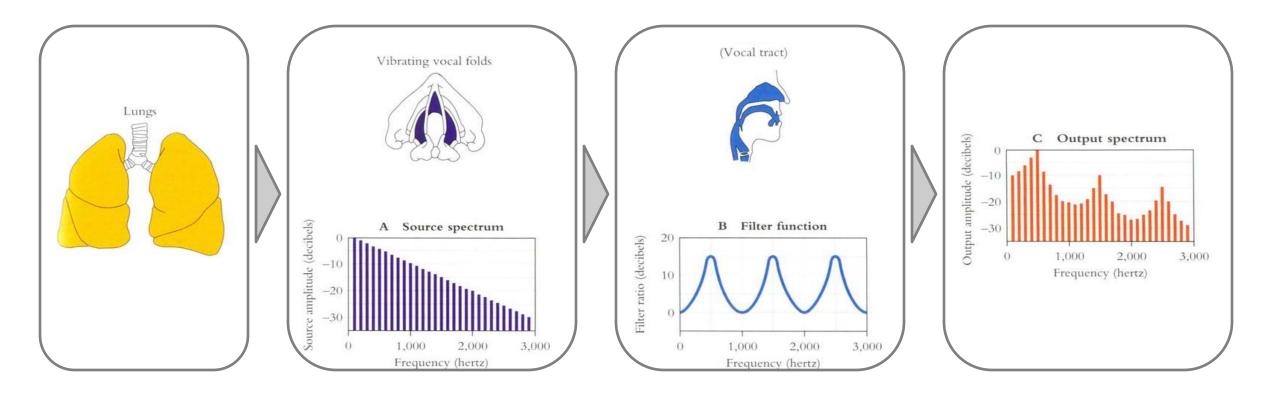
Complex wave repeating nine times

- Plus smaller wave that repeats 4x for every large cycle
- Large wave: freq of 250 Hz (9 times in .036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz



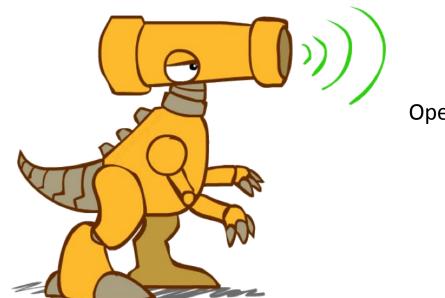
Why These Peaks?

- Articulator process:
 - Vocal cord vibrations create harmonics
 - The mouth is an amplifier
 - Depending on shape of mouth, some harmonics are amplified more than others

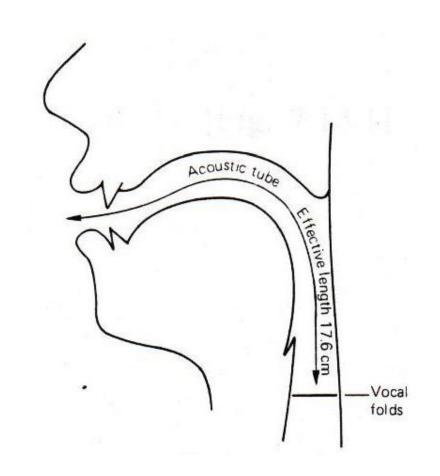


Resonances of the Vocal Tract

The human vocal tract as an open tube



Closed end



- Air in a tube of a given length will tend to vibrate at resonance frequency of tube
- Constraint: Pressure differential should be maximal at (closed) glottal end and minimal at (open) lip end

Spectrum Shapes

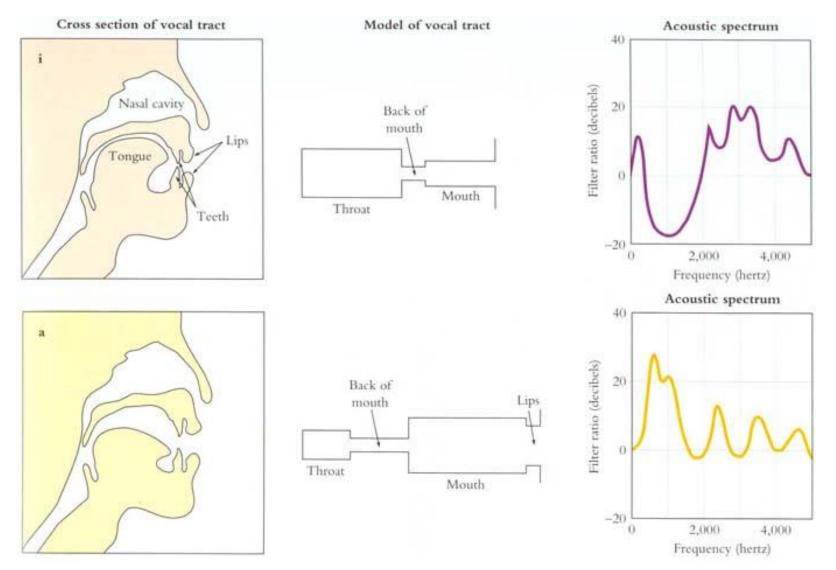
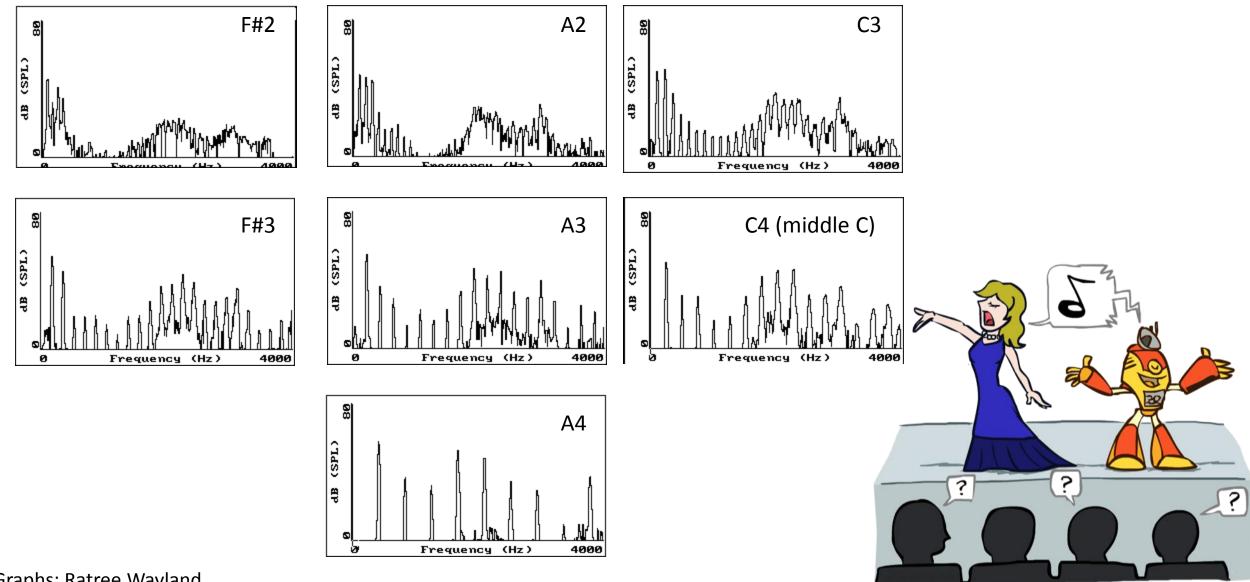


Figure: Mark Liberman

[Demo: speech synthesis]

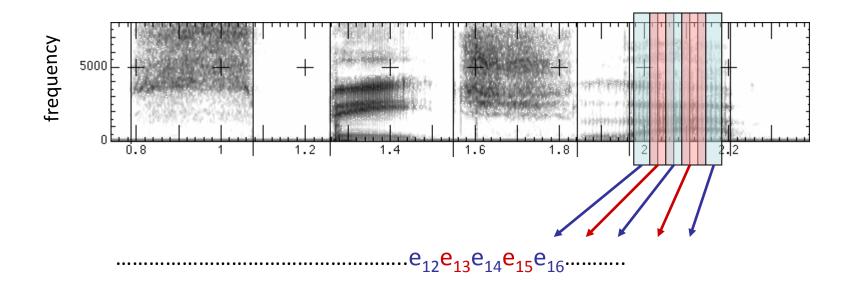
Vowel [i] sung at successively higher pitches



Graphs: Ratree Wayland

Acoustic Feature Sequence

Time slices are translated into acoustic feature vectors (~39 real numbers per slice)



These are the observations E, now we need the hidden states X

Speech State Space

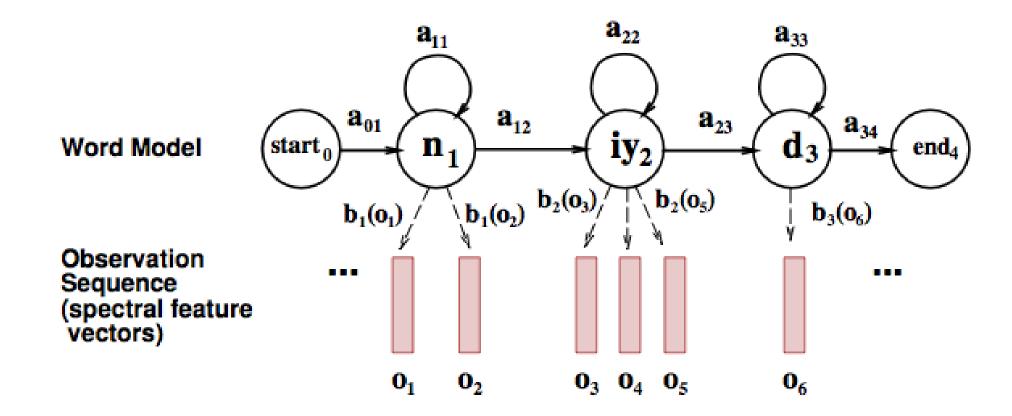
HMM Specification

- P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind of sound)
- P(X|X') encodes how sounds can be strung together

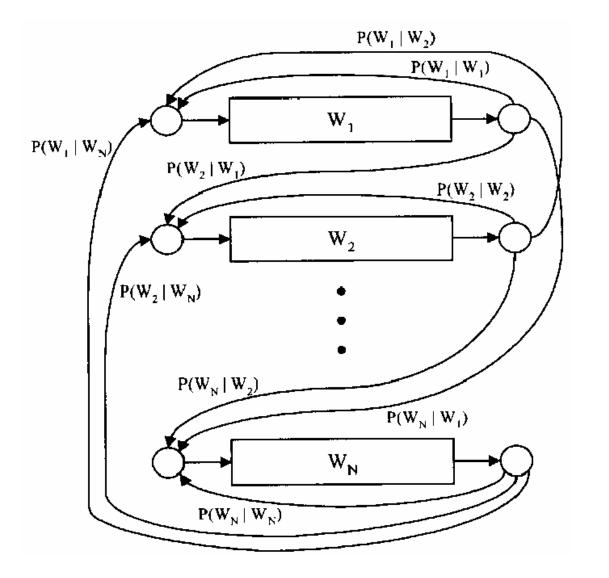
State Space

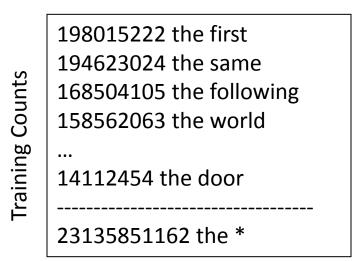
- We will have one state for each sound in each word
- Mostly, states advance sound by sound
- Build a little state graph for each word and chain them together to form the state space X

States in a Word



Transitions with a Bigram Model





$$\hat{P}(\text{door}|\text{the}) = \frac{14112454}{23135851162}$$

= 0.0006

Figure: Huang et al, p. 618

Decoding

- Finding the words given the acoustics is an HMM inference problem
- Which state sequence x_{1:T} is most likely given the evidence e_{1:T}?

$$x_{1:T}^* = \arg\max_{x_{1:T}} P(x_{1:T}|e_{1:T}) = \arg\max_{x_{1:T}} P(x_{1:T}, e_{1:T})$$

• From the sequence x, we can simply read off the words

Today

HMMs

- Particle filters
- Demo bonanza!
- Most-likely-explanation queries
- Applications:
 - "I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis"
 - Speech recognition

