CSCI 446: Artificial Intelligence

Hidden Markov Models

Instructor: Michele Van Dyne

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

Hidden Markov Models

Pacman – Sonar (P4)

74 CS188 Pacman	No. of Concession, Name	1.4		
SCORE: -9	9.0	9.0	XXX	12.0

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Probability Recap

- Conditional probability $P(x|y) = \frac{P(x,y)}{P(y)}$
- Product rule P(x,y) = P(x|y)P(y)

• Chain rule
$$P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$

 $= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$

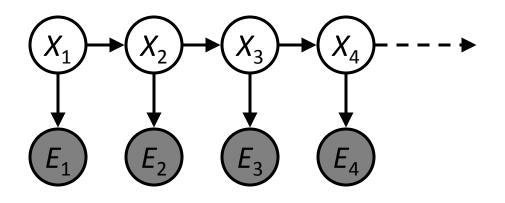
- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if: $X \perp\!\!\!\perp Y | Z$ $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

Hidden Markov Models

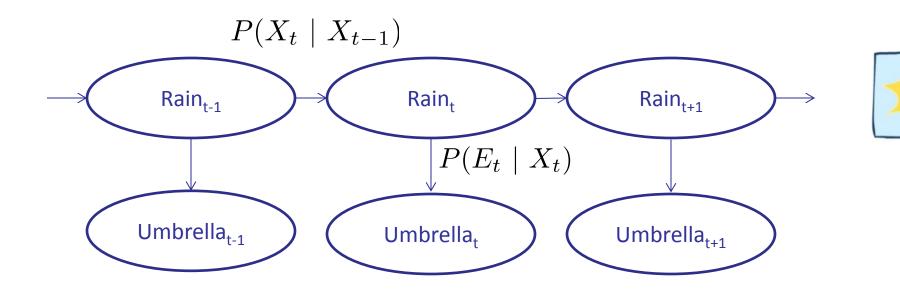
10000

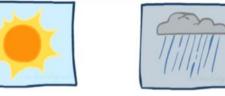
Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step



Example: Weather HMM





An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transitions:
- Emissions:

 $P(X_t \mid X_{t-1})$ $P(E_t \mid X_t)$

R_{t}	R _{t+1}	$P(R_{t+1} R_{t})$	R _t	\mathbf{U}_{t}	P(U _t R _t
+r	+r	0.7	+r	+u	0.9
+r	-r	0.3	+r	-u	0.1
-r	+r	0.3	-r	+u	0.2
-r	-r	0.7	-r	-u	0.8

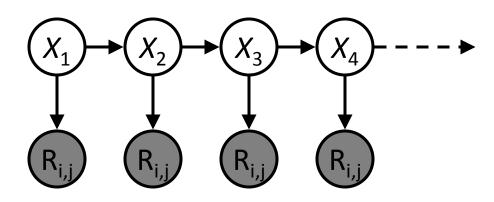
Example: Ghostbusters HMM

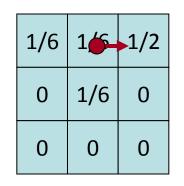
- $P(X_1) = uniform$
- P(X|X') = usually move clockwise, but sometimes move in a random direction or stay in place

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

P(X₁)

 P(R_{ij} | X) = same sensor model as before: red means close, green means far away.

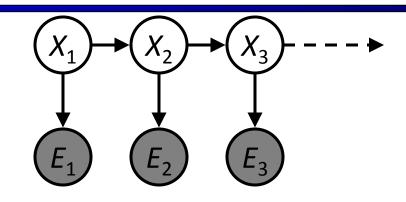




P(X|X'=<1,2>)

[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]

Joint Distribution of an HMM



Joint distribution:

 $P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$

More generally:

 $P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1)\prod_{t=2}^T P(X_t|X_{t-1})P(E_t|X_t)$

- Questions to be resolved:
 - Does this indeed define a joint distribution?
 - Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

• From the chain rule, *every* joint distribution over $X_1, E_1, X_2, E_2, X_3, E_3$ can be written as:

 $P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1, E_1)P(E_2|X_1, E_1, X_2)$ $P(X_3|X_1, E_1, X_2, E_2)P(E_3|X_1, E_1, X_2, E_2, X_3)$

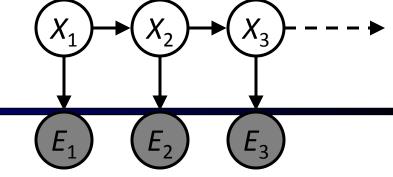
Assuming that

 $X_2 \perp\!\!\!\perp E_1 \mid X_1, \quad E_2 \perp\!\!\!\perp X_1, E_1 \mid X_2, \quad X_3 \perp\!\!\!\perp X_1, E_1, E_2 \mid X_2, \quad E_3 \perp\!\!\!\perp X_1, E_1, X_2, E_2 \mid X_3$

gives us the expression posited on the previous slide:

 $P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$

Chain Rule and HMMs



- From the chain rule, *every* joint distribution over $X_1, E_1, \dots, X_T, E_T$ can be written as: $P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1)\prod_{t=2}^T P(X_t|X_1, E_1, \dots, X_{t-1}, E_{t-1})P(E_t|X_1, E_1, \dots, X_{t-1}, E_{t-1}, X_t)$
- Assuming that for all t:
 - State independent of all past states and all past evidence given the previous state, i.e.:

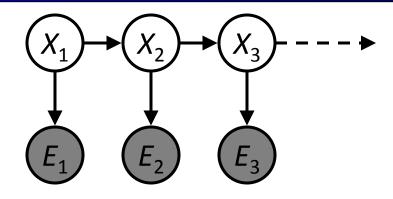
 $X_t \perp X_1, E_1, \ldots, X_{t-2}, E_{t-2}, E_{t-1} \mid X_{t-1}$

$$E_t \perp X_1, E_1, \ldots, X_{t-2}, E_{t-2}, X_{t-1}, E_{t-1} \mid X_t$$

gives us the expression posited on the earlier slide:

$$P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1)\prod_{t=2}^T P(X_t|X_{t-1})P(E_t|X_t)$$

Implied Conditional Independencies



Many implied conditional independencies, e.g.,

$E_1 \perp\!\!\!\perp X_2, E_2, X_3, E_3 \mid X_1$

To prove them

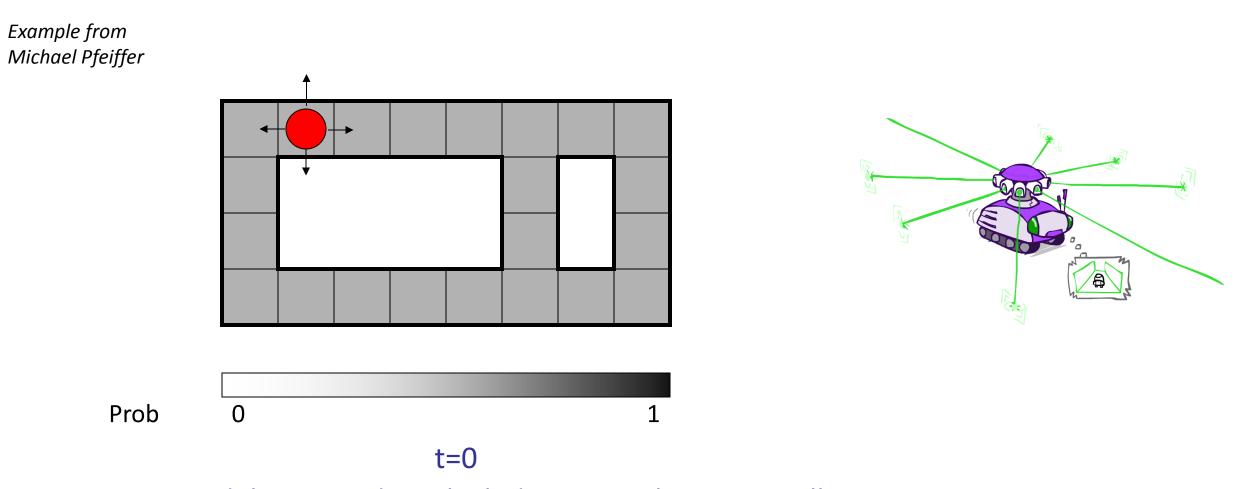
- Approach 1: follow similar (algebraic) approach to what we did in the Markov models lecture
- Approach 2: directly from the graph structure (3 lectures from now)
 - Intuition: If path between U and V goes through W, then $U \perp V \mid W$ [Some fineprint later]

Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

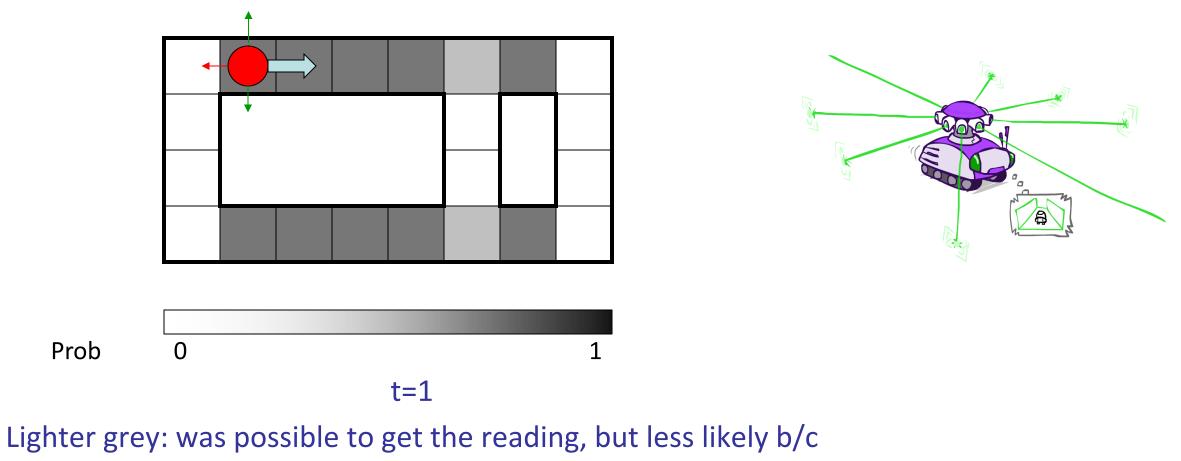
Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution
 B_t(X) = P_t(X_t | e₁, ..., e_t) (the belief state) over time
- We start with B₁(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

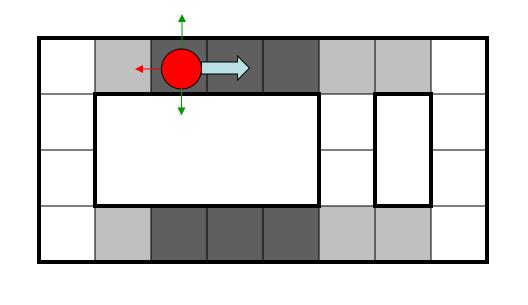


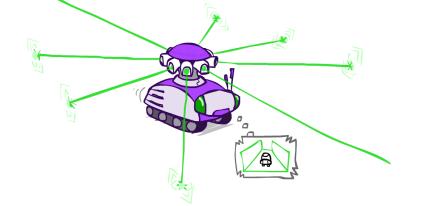
Sensor model: can read in which directions there is a wall, never more than 1 mistake

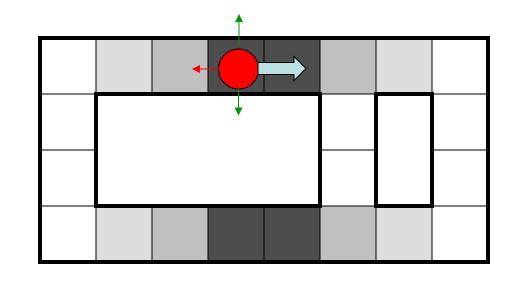
Motion model: may not execute action with small prob.

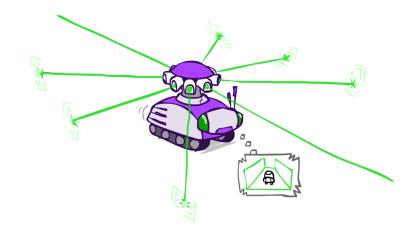


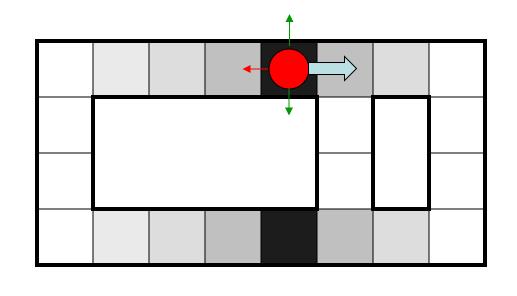
required 1 mistake

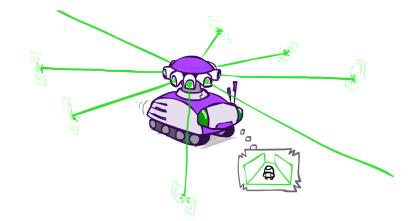


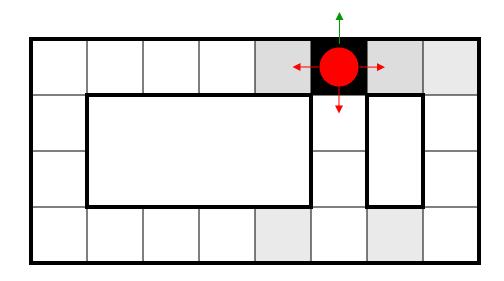


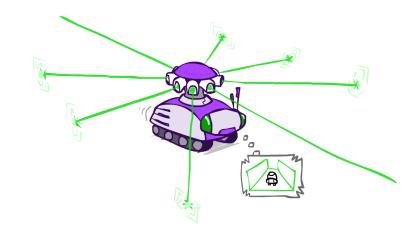




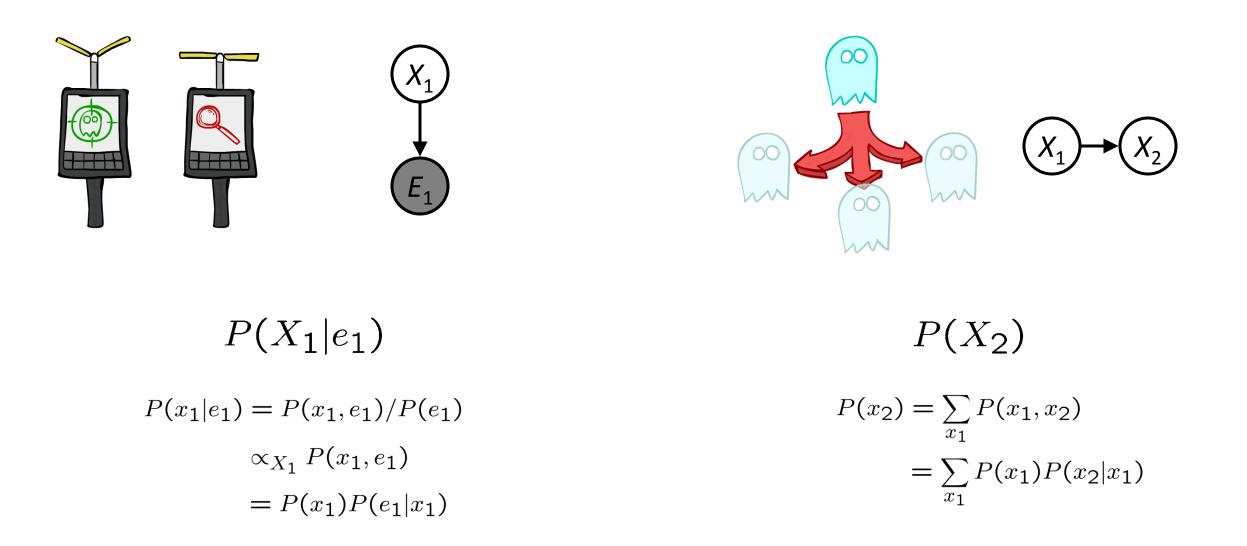








Inference: Base Cases



Passage of Time

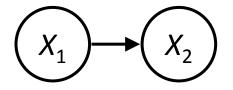
Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$



• Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t) B(x_t)$$

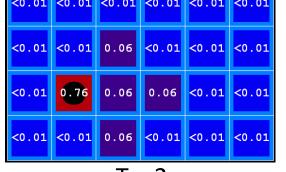
- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

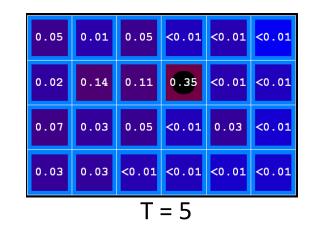
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.76 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

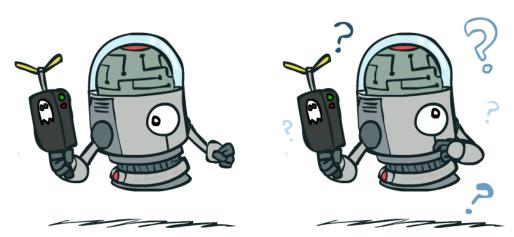
As time passes, uncertainty "accumulates"

T = 1



T = 2



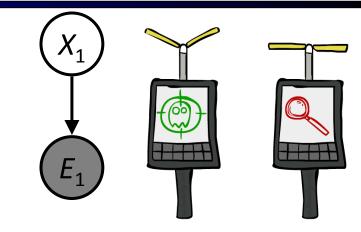


Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

• Then, after evidence comes in:



$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t}) / P(e_{t+1}|e_{1:t})$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

 $= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

• Or, compactly:

 $B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

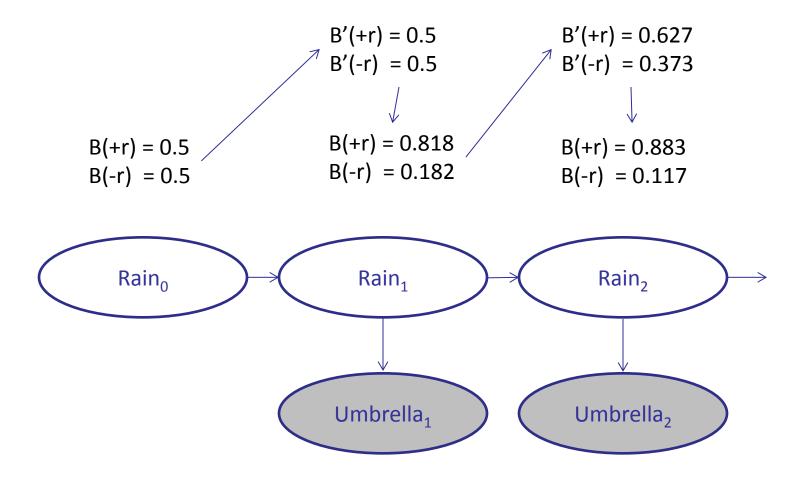
<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

 $B(X) \propto P(e|X)B'(X)$

Example: Weather HMM





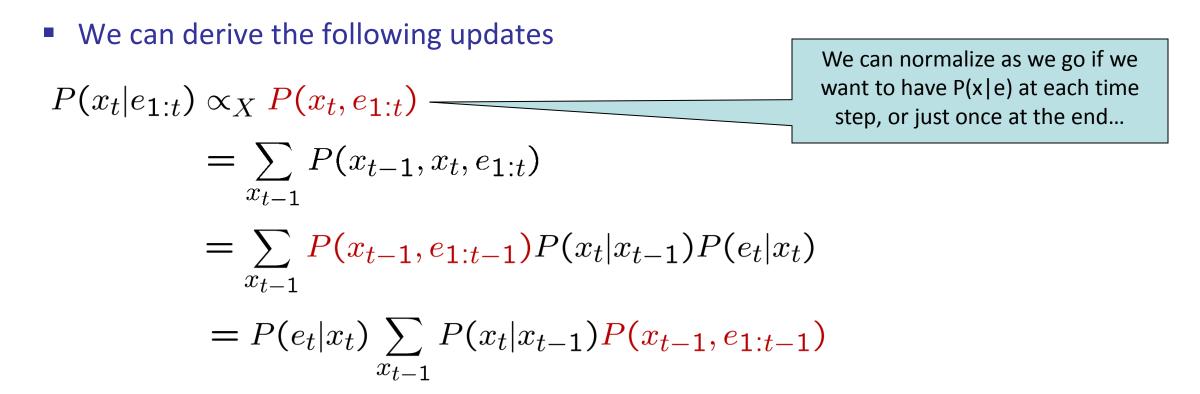
R _t	R _{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R	t	Ut	$P(U_t R_t)$
+	r	+u	0.9
+	r	-u	0.1
-1		+u	0.2
-1	-	-u	0.8

The Forward Algorithm

We are given evidence at each time and want to know

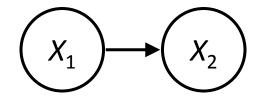
$$B_t(X) = P(X_t | e_{1:t})$$



Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

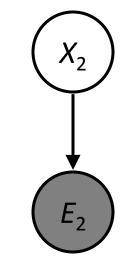
$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$



• We update for evidence:

 $P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

The forward algorithm does both at once (and doesn't normalize)



Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Today

Hidden Markov Models

