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Today 

 Hidden Markov Models 



Pacman – Sonar (P4) 

[Demo: Pacman – Sonar – No Beliefs(L14D1)] 



Probability Recap 

 Conditional probability 
 

 Product rule 
 

 Chain rule  
 

 

 

 X, Y independent if and only if: 
 

 X and Y are conditionally independent given Z if and only if: 

 



Hidden Markov Models 



Hidden Markov Models 

 Markov chains not so useful for most agents 
 Need observations to update your beliefs 

 

 Hidden Markov models (HMMs) 
 Underlying Markov chain over states X 

 You observe outputs (effects) at each time step 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 



Example: Weather HMM 

Rt Rt+1 P(Rt+1|Rt) 
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Umbrellat Umbrellat+1 

Raint-1 Raint Raint+1 

 An HMM is defined by: 
 Initial distribution: 
 Transitions: 
 Emissions: 



Example: Ghostbusters HMM 

 P(X1) = uniform 

 

 P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place 

 

 P(Rij|X) = same sensor model as before: 
red means close, green means far away. 
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[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)] 



Joint Distribution of an HMM 

 Joint distribution: 

 
 

 

 More generally: 
 

 

 Questions to be resolved: 
 Does this indeed define a joint distribution? 

 Can every joint distribution be factored this way, or are we making some assumptions about the 
joint distribution by using this factorization? 
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 From the chain rule, every joint distribution over                                           can be written as: 

 

 

 

 

 Assuming that 

  
 

     

gives us the expression posited on the previous slide:  
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Chain Rule and HMMs 



Chain Rule and HMMs 

 From the chain rule, every joint distribution over                                         can be written as: 

 

 
 

 Assuming that for all t:  
 State independent of all past states and all past evidence given the previous state, i.e.:  

 
 

 Evidence is independent of all past states and all past evidence given the current state, i.e.: 

     
 

      gives us the expression posited on the earlier slide:  
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Implied Conditional Independencies 

 Many implied conditional independencies, e.g., 

 

 To prove them 

 Approach 1: follow similar (algebraic) approach to what we did in the 
Markov models lecture 

 Approach 2: directly from the graph structure (3 lectures from now) 

 Intuition: If path between U and V goes through W, then 

X2 
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[Some fineprint later] 



Real HMM Examples 

 Speech recognition HMMs: 
 Observations are acoustic signals (continuous valued) 

 States are specific positions in specific words (so, tens of thousands) 

 

 Machine translation HMMs: 
 Observations are words (tens of thousands) 

 States are translation options 

 

 Robot tracking: 
 Observations are range readings (continuous) 

 States are positions on a map (continuous) 

 



Filtering / Monitoring 

 Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time 

 

 We start with B1(X) in an initial setting, usually uniform 

 

 As time passes, or we get observations, we update B(X) 

 

 The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program 

 

 



Example: Robot Localization 

t=0 

Sensor model: can read in which directions there is a wall, 
never more than 1 mistake 

Motion model: may not execute action with small prob. 

1 0 Prob 

Example from 
Michael Pfeiffer 



Example: Robot Localization 

t=1 

Lighter grey: was possible to get the reading, but less likely b/c 
required 1 mistake 

1 0 Prob 



Example: Robot Localization 

t=2 

1 0 Prob 



Example: Robot Localization 

t=3 

1 0 Prob 



Example: Robot Localization 

t=4 

1 0 Prob 



Example: Robot Localization 

t=5 

1 0 Prob 



Inference: Base Cases 

E1 

X1 

X2 X1 



Passage of Time 

 Assume we have current belief P(X | evidence to date) 

 

 

 Then, after one time step passes: 

 

 

 

 

 

 

 Basic idea: beliefs get “pushed” through the transitions 
 With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes 

 

X2 X1 

 Or compactly: 



Example: Passage of Time 

 As time passes, uncertainty “accumulates” 

T = 1 T = 2 T = 5 

(Transition model: ghosts usually go clockwise) 



Observation 

 Assume we have current belief P(X | previous evidence): 

 

 

 Then, after evidence comes in: 

 

 

 

 

 

 

 

 Or, compactly: 

 

 

 

E1 

X1 

 Basic idea: beliefs “reweighted” 
by likelihood of evidence 

 Unlike passage of time, we have 
to renormalize 

 



Example: Observation 

 As we get observations, beliefs get reweighted, uncertainty “decreases” 

Before observation After observation 



Example: Weather HMM 

Rt Rt+1 P(Rt+1|Rt) 

+r +r 0.7 

+r -r 0.3 

-r +r 0.3 

-r -r 0.7 

Rt Ut P(Ut|Rt) 

+r +u 0.9 

+r -u 0.1 

-r +u 0.2 

-r -u 0.8 

Umbrella1 Umbrella2 

Rain0 Rain1 Rain2 

B(+r) = 0.5 
B(-r)  = 0.5 

B’(+r) = 0.5 
B’(-r)  = 0.5 

B(+r) = 0.818 
B(-r)  = 0.182 

B’(+r) = 0.627 
B’(-r)  = 0.373 

B(+r) = 0.883 
B(-r)  = 0.117 



The Forward Algorithm 

 We are given evidence at each time and want to know 

 

 

 We can derive the following updates 

 

 

 

 

 

 

 

 

We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end… 



Online Belief Updates 

 Every time step, we start with current P(X | evidence) 

 We update for time: 

 

 

 

 

 We update for evidence: 

 

 

 

 The forward algorithm does both at once (and doesn’t normalize) 
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Pacman – Sonar (P4) 

[Demo: Pacman – Sonar – No Beliefs(L14D1)] 
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 Hidden Markov Models 


