CSCI 446: Artificial Intelligence

Hidden Markov Models

Instructor: Michele Van Dyne

Today

- Hidden Markov Models

Pacman - Sonar (P4)

Probability Recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z if and only if:

$$
X \Perp Y \mid Z
$$

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Hidden Markov Models

Hidden Markov Models

- Markov chains not so useful for most agents
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You observe outputs (effects) at each time step

Example: Weather HMM

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:
$P\left(X_{t} \mid X_{t-1}\right)$
- Emissions:
$P\left(E_{t} \mid X_{t}\right)$

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Example: Ghostbusters HMM

- $P\left(X_{1}\right)=$ uniform
- $P\left(X \mid X^{\prime}\right)=$ usually move clockwise, but sometimes move in a random direction or stay in place

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$P\left(\mathrm{X}_{1}\right)$		

- $\quad P\left(R_{i j} \mid X\right)=$ same sensor model as before: red means close, green means far away.

$1 / 6$	1	$1 / 2$
0	$1 / 6$	0
0	0	0

$$
P\left(X \mid X^{\prime}=<1,2>\right)
$$

Joint Distribution of an HMM

- Joint distribution:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(E_{3} \mid X_{3}\right)$
- More generally:
$P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)$
- Questions to be resolved:
- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and HMMs

- From the chain rule, every joint distribution over $X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}$ can be written as:

$$
\begin{aligned}
P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)= & P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}, E_{1}\right) P\left(E_{2} \mid X_{1}, E_{1}, X_{2}\right) \\
& P\left(X_{3} \mid X_{1}, E_{1}, X_{2}, E_{2}\right) P\left(E_{3} \mid X_{1}, E_{1}, X_{2}, E_{2}, X_{3}\right)
\end{aligned}
$$

- Assuming that
$X_{2} \Perp E_{1}\left|X_{1}, \quad E_{2} \Perp X_{1}, E_{1}\right| X_{2}, \quad X_{3} \Perp X_{1}, E_{1}, E_{2}\left|X_{2}, \quad E_{3} \Perp X_{1}, E_{1}, X_{2}, E_{2}\right| X_{3}$ gives us the expression posited on the previous slide:

$$
P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(E_{3} \mid X_{3}\right)
$$

Chain Rule and HMMs

- From the chain rule, every joint distribution over $X_{1}, E_{1}, \ldots, X_{T}, E_{T}$ can be written as:

$$
P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{1}, E_{1}, \ldots, X_{t-1}, E_{t-1}\right) P\left(E_{t} \mid X_{1}, E_{1}, \ldots, X_{t-1}, E_{t-1}, X_{t}\right)
$$

- Assuming that for all t :
- State independent of all past states and all past evidence given the previous state, i.e.:

$$
X_{t} \Perp X_{1}, E_{1}, \ldots, X_{t-2}, E_{t-2}, E_{t-1} \mid X_{t-1}
$$

- Evidence is independent of all past states and all past evidence given the current state, i.e.:

$$
E_{t} \Perp X_{1}, E_{1}, \ldots, X_{t-2}, E_{t-2}, X_{t-1}, E_{t-1} \mid X_{t}
$$

gives us the expression posited on the earlier slide:

$$
P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)
$$

Implied Conditional Independencies

- Many implied conditional independencies, e.g.,

$$
E_{1} \Perp X_{2}, E_{2}, X_{3}, E_{3} \mid X_{1}
$$

- To prove them
- Approach 1: follow similar (algebraic) approach to what we did in the Markov models lecture
- Approach 2: directly from the graph structure (3 lectures from now)
- Intuition: If path between U and V goes through W , then $U \Perp V \mid W$ [Some fineprint later]

Real HMM Examples

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options
- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_{t}(X)=P_{t}\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ (the belief state) over time
- We start with $B_{1}(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Example: Robot Localization

Example from

Michael Pfeiffer

Prob

Sensor model: can read in which directions there is a wall, never more than 1 mistake
Motion model: may not execute action with small prob.

Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Example: Robot Localization

Prob

$\mathrm{t}=2$

Example: Robot Localization

Prob

$\mathrm{t}=3$

Example: Robot Localization

Prob

$\mathrm{t}=4$

Example: Robot Localization

Prob

$\mathrm{t}=5$

Inference: Base Cases

$$
P\left(X_{1} \mid e_{1}\right)
$$

$$
\begin{aligned}
P\left(x_{1} \mid e_{1}\right) & =P\left(x_{1}, e_{1}\right) / P\left(e_{1}\right) \\
& \propto_{X_{1}} P\left(x_{1}, e_{1}\right) \\
& =P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P\left(X_{2}\right) \\
& P\left(x_{2}\right)=\sum_{x_{1}} P\left(x_{1}, x_{2}\right) \\
&=\sum_{x_{1}} P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right)
\end{aligned}
$$

Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

- Basic idea: beliefs get "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

- As time passes, uncertainty "accumulates"

$\mathrm{T}=1$

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

$\mathrm{T}=2$
(Transition model: ghosts usually go clockwise)

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Observation

- Assume we have current belief $P(X \mid$ previous evidence $)$:

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

" Basic idea: beliefs "reweighted"

- Or, compactly:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

by likelihood of evidence

- Unlike passage of time, we have to renormalize

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Example: Weather HMM

The Forward Algorithm

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- We can derive the following updates

$$
\begin{aligned}
P\left(x_{t} \mid e_{1: t}\right) & \propto_{X} P\left(x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

We can normalize as we go if we want to have $\mathrm{P}(\mathrm{x} \mid e)$ at each time step, or just once at the end...

Online Belief Updates

- Every time step, we start with current P(X| evidence)
- We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

- The forward algorithm does both at once (and doesn't normalize)

Pacman - Sonar (P4)

[Demo: Pacman - Sonar - No Beliefs(L14D1)]

Today

- Hidden Markov Models

