CSCI 446: Artificial Intelligence

Markov Models

Instructor: Michele Van Dyne

Today

- Probability Revisited
- Independence
- Conditional Independence
- Markov Models

Independence

- Two variables are independent in a joint distribution if:

$$
\begin{gathered}
P(X, Y)=P(X) P(Y) \\
\forall x, y P(x, y)=P(x) P(y)
\end{gathered} \quad X \Perp Y
$$

- Says the joint distribution factors into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a modeling assumption
- Independence can be a simplifying assumption
- Empirical joint distributions: at best "close" to independent

- What could we assume for \{Weather, Traffic, Cavity\}?
- Independence is like something from CSPs: what?

Example: Independence?

$P_{1}(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(T)$

T	P
hot	0.5
cold	0.5

$$
P_{2}(T, W)=P(T) P(W)
$$

$P(W)$

W	P
sun	0.6
rain	0.4

T	W	P
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

- N fair, independent coin flips:

$P\left(X_{1}\right)$		$P\left(X_{2}\right)$				
H	0.5					
T	0.5					
H	0.5					
T	0.5			$\quad \cdots$	H	0.5
:---	:---	:---				
T	0.5					

Conditional Independence

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- $\mathrm{P}(+$ catch | +toothache, +cavity) $=\mathrm{P}(+$ catch | +cavity $)$
- The same independence holds if I don't have a cavity:
- P(+catch | +toothache, -cavity) = P(+catch| -cavity)
- Catch is conditionally independent of Toothache given Cavity:
- P(Catch | Toothache, Cavity) $=\mathrm{P}$ (Catch | Cavity)

- Equivalent statements:
- P (Toothache | Catch , Cavity) $=\mathrm{P}$ (Toothache | Cavity)
- P (Toothache, Catch | Cavity) $=\mathrm{P}$ (Toothache | Cavity) P(Catch | Cavity)
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$
X \Perp Y \mid Z
$$

if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining

Conditional Independence

- What about this domain:
- Fire
- Smoke
- Alarm

Probability Recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z if and only if:

$$
X \Perp Y \mid Z
$$

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Markov Models

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

- Value of X at a given time is called the state

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Joint Distribution of a Markov Model

- Joint distribution:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)
$$

- More generally:

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{T}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\
& =P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

- Questions to be resolved:
- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and Markov Models

- From the chain rule, every joint distribution over $X_{1}, X_{2}, X_{3}, X_{4}$ can be written as:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) P\left(X_{4} \mid X_{1}, X_{2}, X_{3}\right)
$$

- Assuming that

$$
X_{3} \Perp X_{1} \mid X_{2} \quad \text { and } \quad X_{4} \Perp X_{1}, X_{2} \mid X_{3}
$$

results in the expression posited on the previous slide:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)
$$

Chain Rule and Markov Models

- From the chain rule, every joint distribution over $X_{1}, X_{2}, \ldots, X_{T}$ can be written as:

$$
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{1}, X_{2}, \ldots, X_{t-1}\right)
$$

- Assuming that for all t :

$$
X_{t} \Perp X_{1}, \ldots, X_{t-2} \mid X_{t-1}
$$

gives us the expression posited on the earlier slide:

$$
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
$$

Implied Conditional Independencies

- We assumed: $\quad X_{3} \Perp X_{1} \mid X_{2} \quad$ and $\quad X_{4} \Perp X_{1}, X_{2} \mid X_{3}$
- Do we also have $\quad X_{1} \Perp X_{3}, X_{4} \mid X_{2}$

- Yes!
- Proof:

$$
\begin{aligned}
P\left(X_{1} \mid X_{2}, X_{3}, X_{4}\right) & =\frac{P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)}{P\left(X_{2}, X_{3}, X_{4}\right)} \\
& =\frac{P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)}{\sum_{x_{1}} P\left(x_{1}\right) P\left(X_{2} \mid x_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)} \\
& =\frac{P\left(X_{1}, X_{2}\right)}{P\left(X_{2}\right)} \\
& =P\left(X_{1} \mid X_{2}\right)
\end{aligned}
$$

Markov Models Recap

- Explicit assumption for all $t: \quad X_{t} \Perp X_{1}, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{T}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\
& =P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

- Implied conditional independencies: (try to prove this!)
- Past variables independent of future variables given the present i.e., if $t_{1}<t_{2}<t_{3}$ or $t_{1}>t_{2}>t_{3}$ then: $\quad X_{t_{1}} \Perp X_{t_{3}} \mid X_{t_{2}}$
- Additional explicit assumption: $P\left(X_{t} \mid X_{t-1}\right)$ is the same for all t

Example Markov Chain: Weather

- States: $\mathrm{X}=\{$ rain, sun $\}$
- Initial distribution: 1.0 sun

- CPT P $\left(X_{t} \mid X_{t-1}\right)$:

Two new ways of representing the same CPT

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Example Markov Chain: Weather

- Initial distribution: 1.0 sun

- What is the probability distribution after one step?

$$
\begin{aligned}
P\left(X_{2}=\text { sun }\right)= & P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { sun }\right) P\left(X_{1}=\text { sun }\right)+ \\
& P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { rain }\right) P\left(X_{1}=\text { rain }\right) \\
& 0.9 \cdot 1.0+0.3 \cdot 0.0=0.9
\end{aligned}
$$

Mini-Forward Algorithm

- Question: What's P(X) on some day t?

$$
\begin{aligned}
P\left(x_{1}\right) & =\text { known } \\
P\left(x_{t}\right) & =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}\right) \\
& =\sum_{x_{t-1}} P(x_{t} \underbrace{\left.x_{t-1}\right) P\left(x_{t-1}\right)}_{\text {Forward simulation }}
\end{aligned}
$$

Example Run of Mini-Forward Algorithm

- From initial observation of sun
$\left\langle\begin{array}{l}1.0 \\ 0.0\end{array}\right\rangle$
$\mathrm{P}\left(X_{1}\right)$
$\left\langle\begin{array}{l}0.9 \\ 0.1\end{array}\right\rangle$

$\left\langle\begin{array}{l}0.804 \\ 0.196\end{array}\right\rangle$

$\left.\begin{array}{l}0.75 \\ 0.25\end{array}\right\rangle$
$\mathrm{P}\left(X_{1}\right)$
$\mathrm{P}\left(X_{2}\right)$
$\mathrm{P}\left(X_{3}\right)$
$\mathrm{P}\left(X_{4}\right)$
$\mathrm{P}\left(X_{\infty}\right)$
- From initial observation of rain

- From yet another initial distribution $\mathrm{P}\left(\mathrm{X}_{1}\right)$:

Stationary Distributions

- For most chains:
- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution
- Stationary distribution:
- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Example: Stationary Distributions

- Question: What's $\mathrm{P}(\mathrm{X})$ at time $\mathrm{t}=$ infinity?

$$
\begin{aligned}
P_{\infty}(\text { sun }) & =P(\text { sun } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { sun } \mid \text { rain }) P_{\infty}(\text { rain }) \\
P_{\infty}(\text { rain }) & =P(\text { rain } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { rain } \mid \text { rain }) P_{\infty}(\text { rain })
\end{aligned}
$$

$$
\begin{aligned}
P_{\infty}(\text { sun }) & =0.9 P_{\infty}(\text { sun })+0.3 P_{\infty}(\text { rain }) \\
P_{\infty}(\text { rain }) & =0.1 P_{\infty}(\text { sun })+0.7 P_{\infty}(\text { rain }) \\
P_{\infty}(\text { sun }) & =3 P_{\infty}(\text { rain }) \\
P_{\infty}(\text { rain }) & =1 / 3 P_{\infty}(\text { sun })
\end{aligned}
$$

Also: $P_{\infty}($ sun $)+P_{\infty}($ rain $)=1$

$$
\begin{aligned}
P_{\infty}(\text { sun }) & =3 / 4 \\
P_{\infty}(\text { rain }) & =1 / 4
\end{aligned}
$$

$\mathbf{X}_{\mathbf{t}-1}$	$\mathbf{X}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{X}_{\mathbf{t}} \mid \mathbf{X}_{\mathbf{t - 1}}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Application of Stationary Distribution: Web Link Analysis

- PageRank over a web graph
- Each web page is a state
- Initial distribution: uniform over pages
- Transitions:
- With prob. c, uniform jump to a random page (dotted lines, not all shown)
- With prob. 1-c, follow a random outlink (solid lines)

- Stationary distribution
- Will spend more time on highly reachable pages
- E.g. many ways to get to the Acrobat Reader download page
- Somewhat robust to link spam
- Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)

Today

- Probability Revisited
- Independence
- Conditional Independence
- Markov Models

