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Today 

 Probability Revisited 
 Independence 

 Conditional Independence 

 Markov Models 



Independence 

 Two variables are independent in a joint distribution if: 
 

 

 

 

 

 Says the joint distribution factors into a product of two simple ones 

 Usually variables aren’t independent! 

 

 Can use independence as a modeling assumption 
 Independence can be a simplifying assumption 

 Empirical  joint distributions: at best “close” to independent 

 What could we assume for {Weather, Traffic, Cavity}? 

 

 Independence is like something from CSPs: what? 



Example: Independence? 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

T W P 

hot sun 0.3 

hot rain 0.2 

cold sun 0.3 

cold rain 0.2 

T P 

hot 0.5 

cold 0.5 

W P 

sun 0.6 

rain 0.4 



Example: Independence 

 N fair, independent coin flips: 

H 0.5 

T 0.5 

H 0.5 

T 0.5 

H 0.5 

T 0.5 



Conditional Independence 



Conditional Independence 

 P(Toothache, Cavity, Catch) 
 

 If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache: 
 P(+catch | +toothache, +cavity) = P(+catch | +cavity) 

 
 The same independence holds if I don’t have a cavity: 

 P(+catch | +toothache, -cavity) = P(+catch| -cavity) 

 
 Catch is conditionally independent of Toothache given Cavity: 

 P(Catch | Toothache, Cavity) = P(Catch | Cavity) 

 

 Equivalent statements: 
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity) 
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 
 One can be derived from the other easily 



Conditional Independence 

 Unconditional (absolute) independence very rare (why?) 
 

 Conditional independence is our most basic and robust form 
of knowledge about uncertain environments. 
 

 X is conditionally independent of Y given Z 
 

      if and only if: 
 
 
      or, equivalently, if and only if 

 
 
 

 
 



Conditional Independence 

 What about this domain: 
 

 Traffic 
 Umbrella 
 Raining 

 
 



Conditional Independence 

 What about this domain: 
 

 Fire 
 Smoke 
 Alarm 

 
 



Probability Recap 

 Conditional probability 
 

 Product rule 
 

 Chain rule  
 

 

 

 X, Y independent if and only if: 
 

 X and Y are conditionally independent given Z if and only if: 

 



 
 

Markov Models 



Reasoning over Time or Space 

 Often, we want to reason about a sequence of observations 
 

 Speech recognition 
 

 Robot localization 
 

 User attention 
 

 Medical monitoring 

 

 Need to introduce time (or space) into our models 



Markov Models 

 Value of X at a given time is called the state 

 

 

 

 

 

 

 Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities) 

 Stationarity assumption: transition probabilities the same at all times 

 Same as MDP transition model, but no choice of action 

X2 X1 X3 X4 



Joint Distribution of a Markov Model 

 Joint distribution: 

 
 

 More generally: 
 

 

 
 Questions to be resolved: 

 Does this indeed define a joint distribution? 

 Can every joint distribution be factored this way, or are we making some assumptions 
about the joint distribution by using this factorization? 

X2 X1 X3 X4 



Chain Rule and Markov Models 

 From the chain rule, every joint distribution over                                 can be written as: 

 

 

 

 Assuming that 

                                                                    and 

 

    results in the expression posited on the previous slide:  

 
 

X2 X1 X3 X4 



Chain Rule and Markov Models 

 From the chain rule, every joint distribution over                                         can be written as: 

 

 

 

 Assuming that for all t:  

 

 

    gives us the expression posited on the earlier slide:  

 
 

X2 X1 X3 X4 



Implied Conditional Independencies 

 We assumed:                                 and 

 

 Do we also have     ? 

 Yes!  

 Proof: 

X2 X1 X3 X4 



Markov Models Recap 

 Explicit assumption for all   t : 

 Consequence, joint distribution can be written as:  

 

 
 
 

 Implied conditional independencies:  (try to prove this!) 

 Past variables independent of future variables given the present 

i.e., if                     or                      then: 

 Additional explicit assumption:                         is the same for all t 



Example Markov Chain: Weather 

 States: X = {rain, sun} 

 

 

 

rain sun 

0.9 

0.7 

0.3 

0.1 

Two new ways of representing the same CPT 

sun 

rain 

sun 

rain 

0.1 

0.9 

0.7 

0.3 

Xt-1 Xt P(Xt|Xt-1) 

sun sun 0.9 

sun rain 0.1 

rain sun 0.3 

rain rain 0.7 

 Initial distribution: 1.0 sun 

 

 CPT P(Xt | Xt-1): 

 

 

 



Example Markov Chain: Weather 

 Initial distribution: 1.0 sun 

 

 

 

 What is the probability distribution after one step? 

rain sun 

0.9 

0.7 

0.3 

0.1 



Mini-Forward Algorithm 

 Question: What’s P(X) on some day t? 

Forward simulation 

X2 X1 X3 X4 



Example Run of Mini-Forward Algorithm 

 From initial observation of sun 

 

 

  

 From initial observation of rain 

 

 
 

 From yet another initial distribution P(X1): 

P(X1) P(X2) P(X3) P(X) P(X4) 

P(X1) P(X2) P(X3) P(X) P(X4) 

P(X1) P(X) 

… 

[Demo: L13D1,2,3] 



 Stationary distribution: 
 The distribution we end up with is called 

the stationary distribution           of the 
chain 

 It satisfies 
 

 

 
 

 

Stationary Distributions 

 For most chains: 
 Influence of the initial distribution 

gets less and less over time. 

 The distribution we end up in is 
independent of the initial distribution 

 

 

 
 

 



Example: Stationary Distributions 

 Question: What’s P(X) at time t = infinity? 

X2 X1 X3 X4 

Xt-1 Xt P(Xt|Xt-1) 

sun sun 0.9 

sun rain 0.1 

rain sun 0.3 

rain rain 0.7 

Also: 



Application of Stationary Distribution: Web Link Analysis 

 PageRank over a web graph 
 Each web page is a state 

 

 Initial distribution: uniform over pages 
 

 Transitions: 
 

 With prob. c, uniform jump to a 
 random page (dotted lines, not all shown) 
 With prob. 1-c, follow a random 
 outlink (solid lines) 

 

 Stationary distribution 
 Will spend more time on highly reachable pages 
 E.g. many ways to get to the Acrobat Reader download page 
 Somewhat robust to link spam 
 Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting 
less important over time) 



Today 

 Probability Revisited 
 Independence 

 Conditional Independence 

 Markov Models 


