
CSCI 446: Artificial Intelligence 
 Reinforcement Learning 

Instructor: Michele Van Dyne 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.] 



Today 

 Reinforcement Learning 

 Offline (MDPs) vs Online (RL) 
 Model-Based Learning 

 Model-Free Learning 

 Passive Reinforcement Learning 

 Temporal Difference Learning 

 Active Reinforcement Learning 

 



Reinforcement Learning 



Reinforcement Learning 

 Basic idea: 
 Receive feedback in the form of rewards 

 Agent’s utility is defined by the reward function 

 Must (learn to) act so as to maximize expected rewards 

 All learning is based on observed samples of outcomes! 

Environment 

 

Agent 

Actions: a 
State: s 

Reward: r 



Example: Learning to Walk 

Initial A Learning Trial After Learning [1K Trials] 

[Kohl and Stone, ICRA 2004] 



Example: Learning to Walk 

Initial 
[Video: AIBO WALK – initial] [Kohl and Stone, ICRA 2004] 



Example: Learning to Walk 

Training 
[Video: AIBO WALK – training] [Kohl and Stone, ICRA 2004] 



Example: Learning to Walk 

Finished 
[Video: AIBO WALK – finished] [Kohl and Stone, ICRA 2004] 



Example: Toddler Robot 

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s] 



The Crawler! 

[Demo: Crawler Bot (L10D1)] [You, in Project 3] 



Reinforcement Learning 

 Still assume a Markov decision process (MDP): 

 A set of states s  S 

 A set of actions (per state) A 

 A model T(s,a,s’) 

 A reward function R(s,a,s’) 

 Still looking for a policy (s) 
 

 New twist: don’t know T or R 

 I.e. we don’t know which states are good or what the actions do 

 Must actually try actions and states out to learn 



Offline (MDPs) vs. Online (RL) 

Offline Solution Online Learning 



Model-Based Learning 



Model-Based Learning 

 Model-Based Idea: 
 Learn an approximate model based on experiences 
 Solve for values as if the learned model were correct 

 

 Step 1: Learn empirical MDP model 
 Count outcomes s’ for each s, a 
 Normalize to give an estimate of 
 Discover each                       when we experience (s, a, s’) 

 
 Step 2: Solve the learned MDP 

 For example, use value iteration, as before 



Example: Model-Based Learning 

Input Policy   

Assume:  = 1 

Observed Episodes (Training) Learned Model 

A 

B C D 

E 

B, east, C, -1 
C, east, D, -1 
D, exit,  x, +10 

B, east, C, -1 
C, east, D, -1 
D, exit,  x, +10 

E, north, C, -1 
C, east,   A, -1 
A, exit,    x, -10 

Episode 1 Episode 2 

Episode 3 Episode 4 

E, north, C, -1 
C, east,   D, -1 
D, exit,    x, +10 

T(s,a,s’). 
 

T(B, east, C) = 1.00 
T(C, east, D) = 0.75 
T(C, east, A) = 0.25 

… 
 

R(s,a,s’). 
 

R(B, east, C) = -1 
R(C, east, D) = -1 
R(D, exit, x) = +10 

… 



Example: Expected Age 

Goal: Compute expected age of CSCI 446 students 

Unknown P(A): “Model Based” Unknown P(A): “Model Free” 

Without P(A), instead collect samples [a1, a2, … aN] 

Known P(A) 

Why does this 
work?  Because 
samples appear 
with the right 
frequencies. 

Why does this 
work?  Because 
eventually you 
learn the right 

model. 



Model-Free Learning 



Passive Reinforcement Learning 



Passive Reinforcement Learning 

 Simplified task: policy evaluation 
 Input: a fixed policy (s) 

 You don’t know the transitions T(s,a,s’) 

 You don’t know the rewards R(s,a,s’) 

 Goal: learn the state values 

 

 In this case: 
 Learner is “along for the ride” 

 No choice about what actions to take 

 Just execute the policy and learn from experience 

 This is NOT offline planning!  You actually take actions in the world. 

 



Direct Evaluation 

 Goal: Compute values for each state under  
 

 Idea: Average together observed sample values 

 Act according to  

 Every time you visit a state, write down what the 
sum of discounted rewards turned out to be 

 Average those samples 
 

 This is called direct evaluation 



Example: Direct Evaluation 

Input Policy   

Assume:  = 1 

Observed Episodes (Training) Output Values 

A 

B C D 

E 

B, east, C, -1 
C, east, D, -1 
D, exit,  x, +10 

B, east, C, -1 
C, east, D, -1 
D, exit,  x, +10 

E, north, C, -1 
C, east,   A, -1 
A, exit,    x, -10 

Episode 1 Episode 2 

Episode 3 Episode 4 

E, north, C, -1 
C, east,   D, -1 
D, exit,    x, +10 

A 

B C D 

E 

+8 +4 +10 

-10 

-2 



Problems with Direct Evaluation 

 What’s good about direct evaluation? 

 It’s easy to understand 

 It doesn’t require any knowledge of T, R 

 It eventually computes the correct average values, 
using just sample transitions 

 

 What bad about it? 

 It wastes information about state connections 

 Each state must be learned separately 

 So, it takes a long time to learn 

Output Values 

 A 

 B  C  D 

 E 

+8 +4 +10 

-10 

-2 

If B and E both go to C 
under this policy, how can 
their values be different? 



Why Not Use Policy Evaluation? 

 Simplified Bellman updates calculate V for a fixed policy: 
 Each round, replace V with a one-step-look-ahead layer over V 

 
 
 
 
 
 

 This approach fully exploited the connections between the states 
 Unfortunately, we need T and R to do it! 

 

 Key question: how can we do this update to V without knowing T and R? 
 In other words, how to we take a weighted average without knowing the weights? 

 
 
 
 
 
 
 

(s) 

s 

s, (s) 

s, (s),s’ 

s’ 



Sample-Based Policy Evaluation? 

 We want to improve our estimate of V by computing these averages: 
 
 

 Idea: Take samples of outcomes s’ (by doing the action!) and average 

 
 
 
 
 
 
 
 

(s) 

s 

s, (s) 

s1' s2' s3' 

s, (s),s’ 

s' 

Almost!  But we can’t 
rewind time to get sample 
after sample from state s. 



Temporal Difference Learning 

 Big idea: learn from every experience! 
 Update V(s) each time we experience a transition (s, a, s’, r) 

 Likely outcomes s’ will contribute updates more often 

 

 Temporal difference learning of values 
 Policy still fixed, still doing evaluation! 

 Move values toward value of whatever successor occurs: running average 

 

 

 

 

 

(s) 

s 

s, (s) 

s’ 

Sample of V(s): 

Update to V(s): 

Same update: 



Exponential Moving Average 

 Exponential moving average  

 The running interpolation update: 
 

 Makes recent samples more important: 
 

 

 

 

 Forgets about the past (distant past values were wrong anyway) 

 

 Decreasing learning rate (alpha) can give converging averages 

 



Example: Temporal Difference Learning 

Assume:  = 1, α = 1/2 

Observed Transitions 

B, east, C, -2 

0 

0 0 8 

0 

0 

-1 0 8 

0 

0 

-1 3 8 

0 

C, east, D, -2 

A 

B C D 

E 

States 



Problems with TD Value Learning 

 TD value leaning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages 

 However, if we want to turn values into a (new) policy, we’re sunk: 

 

 

 

 

 Idea: learn Q-values, not values 

 Makes action selection model-free too! 

a 

s 

s, a 

s,a,s’ 

s’ 



Active Reinforcement Learning 



Active Reinforcement Learning 

 Full reinforcement learning: optimal policies (like value iteration) 
 You don’t know the transitions T(s,a,s’) 

 You don’t know the rewards R(s,a,s’) 

 You choose the actions now 

 Goal: learn the optimal policy / values 

 

 In this case: 
 Learner makes choices! 

 Fundamental tradeoff: exploration vs. exploitation 

 This is NOT offline planning!  You actually take actions in the world and 
find out what happens… 



Detour: Q-Value Iteration 

 Value iteration: find successive (depth-limited) values 
 Start with V0(s) = 0, which we know is right 
 Given Vk, calculate the depth k+1 values for all states: 

 
 
 

 
 But Q-values are more useful, so compute them instead 

 Start with Q0(s,a) = 0, which we know is right 
 Given Qk, calculate the depth k+1 q-values for all q-states: 



Q-Learning 

 Q-Learning: sample-based Q-value iteration 

 

 

 Learn Q(s,a) values as you go 

 Receive a sample (s,a,s’,r) 

 Consider your old estimate: 

 Consider your new sample estimate: 
 

 

 Incorporate the new estimate into a running average: 

[Demo: Q-learning – gridworld (L10D2)] 
[Demo: Q-learning – crawler (L10D3)] 



Q-Learning Properties 

 Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally! 

 

 This is called off-policy learning 
 

 Caveats: 

 You have to explore enough 

 You have to eventually make the learning rate 

 small enough 

 … but not decrease it too quickly 

 Basically, in the limit, it doesn’t matter how you select actions (!) 
 



Today 

 Reinforcement Learning 

 Offline (MDPs) vs Online (RL) 
 Model-Based Learning 

 Model-Free Learning 

 Passive Reinforcement Learning 

 Temporal Difference Learning 

 Active Reinforcement Learning 

 


