
CSCI 446: Artificial Intelligence
 Reinforcement Learning

Instructor: Michele Van Dyne
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

 Reinforcement Learning

 Offline (MDPs) vs Online (RL)
 Model-Based Learning

 Model-Free Learning

 Passive Reinforcement Learning

 Temporal Difference Learning

 Active Reinforcement Learning

Reinforcement Learning

Reinforcement Learning

 Basic idea:
 Receive feedback in the form of rewards

 Agent’s utility is defined by the reward function

 Must (learn to) act so as to maximize expected rewards

 All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial] [Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Training
[Video: AIBO WALK – training] [Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished] [Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Reinforcement Learning

 Still assume a Markov decision process (MDP):

 A set of states s  S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

 Still looking for a policy (s)

 New twist: don’t know T or R

 I.e. we don’t know which states are good or what the actions do

 Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

 Model-Based Idea:
 Learn an approximate model based on experiences
 Solve for values as if the learned model were correct

 Step 1: Learn empirical MDP model
 Count outcomes s’ for each s, a
 Normalize to give an estimate of
 Discover each when we experience (s, a, s’)

 Step 2: Solve the learned MDP

 For example, use value iteration, as before

Example: Model-Based Learning

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).

T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).

R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Example: Expected Age

Goal: Compute expected age of CSCI 446 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

 Simplified task: policy evaluation
 Input: a fixed policy (s)

 You don’t know the transitions T(s,a,s’)

 You don’t know the rewards R(s,a,s’)

 Goal: learn the state values

 In this case:
 Learner is “along for the ride”

 No choice about what actions to take

 Just execute the policy and learn from experience

 This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

 Goal: Compute values for each state under 

 Idea: Average together observed sample values

 Act according to 

 Every time you visit a state, write down what the
sum of discounted rewards turned out to be

 Average those samples

 This is called direct evaluation

Example: Direct Evaluation

Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Evaluation

 What’s good about direct evaluation?

 It’s easy to understand

 It doesn’t require any knowledge of T, R

 It eventually computes the correct average values,
using just sample transitions

 What bad about it?

 It wastes information about state connections

 Each state must be learned separately

 So, it takes a long time to learn

Output Values

 A

 B C D

 E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?

 Simplified Bellman updates calculate V for a fixed policy:
 Each round, replace V with a one-step-look-ahead layer over V

 This approach fully exploited the connections between the states
 Unfortunately, we need T and R to do it!

 Key question: how can we do this update to V without knowing T and R?
 In other words, how to we take a weighted average without knowing the weights?

(s)

s

s, (s)

s, (s),s’

s’

Sample-Based Policy Evaluation?

 We want to improve our estimate of V by computing these averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1' s2' s3'

s, (s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning

 Big idea: learn from every experience!
 Update V(s) each time we experience a transition (s, a, s’, r)

 Likely outcomes s’ will contribute updates more often

 Temporal difference learning of values
 Policy still fixed, still doing evaluation!

 Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

 Exponential moving average

 The running interpolation update:

 Makes recent samples more important:

 Forgets about the past (distant past values were wrong anyway)

 Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Assume:  = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

 TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

 However, if we want to turn values into a (new) policy, we’re sunk:

 Idea: learn Q-values, not values

 Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

Active Reinforcement Learning

Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
 You don’t know the transitions T(s,a,s’)

 You don’t know the rewards R(s,a,s’)

 You choose the actions now

 Goal: learn the optimal policy / values

 In this case:
 Learner makes choices!

 Fundamental tradeoff: exploration vs. exploitation

 This is NOT offline planning! You actually take actions in the world and
find out what happens…

Detour: Q-Value Iteration

 Value iteration: find successive (depth-limited) values
 Start with V0(s) = 0, which we know is right
 Given Vk, calculate the depth k+1 values for all states:

 But Q-values are more useful, so compute them instead

 Start with Q0(s,a) = 0, which we know is right
 Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go

 Receive a sample (s,a,s’,r)

 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

 This is called off-policy learning

 Caveats:

 You have to explore enough

 You have to eventually make the learning rate

 small enough

 … but not decrease it too quickly

 Basically, in the limit, it doesn’t matter how you select actions (!)

Today

 Reinforcement Learning

 Offline (MDPs) vs Online (RL)
 Model-Based Learning

 Model-Free Learning

 Passive Reinforcement Learning

 Temporal Difference Learning

 Active Reinforcement Learning

