CSCI 446: Artificial Intelligence Markov Decision Processes

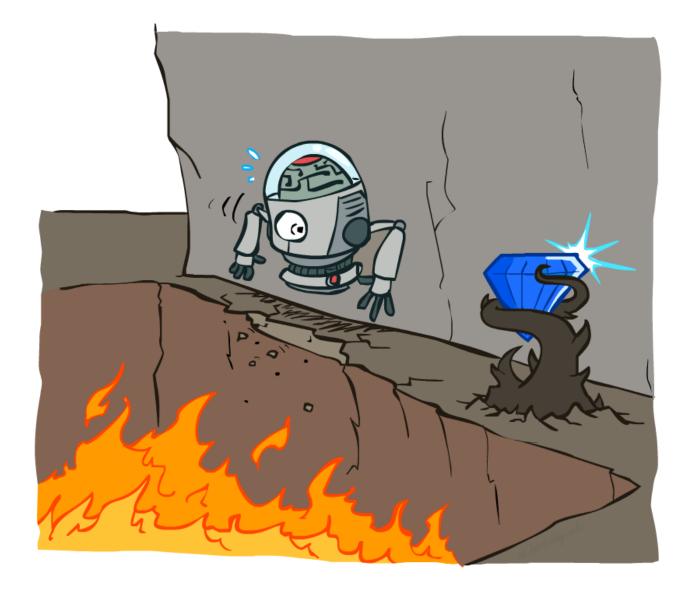
Instructor: Michele Van Dyne

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

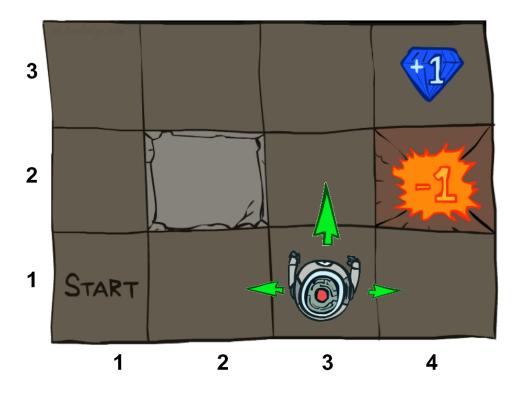
- Non-deterministic Search
- Utilities of Sequences
- Solving MDPs
- Value Iteration

Non-Deterministic Search



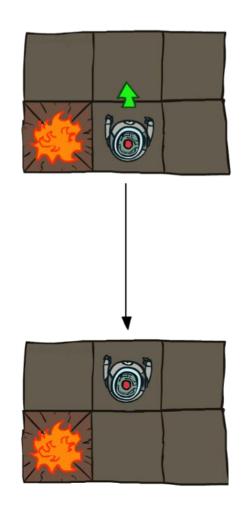
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

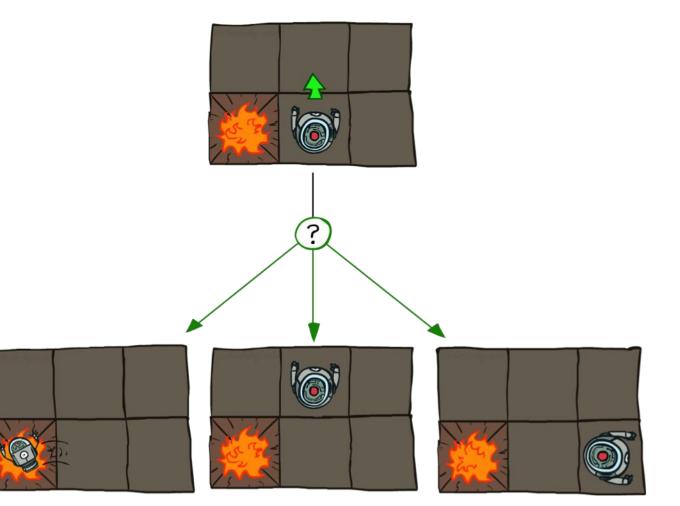


Grid World Actions

Deterministic Grid World

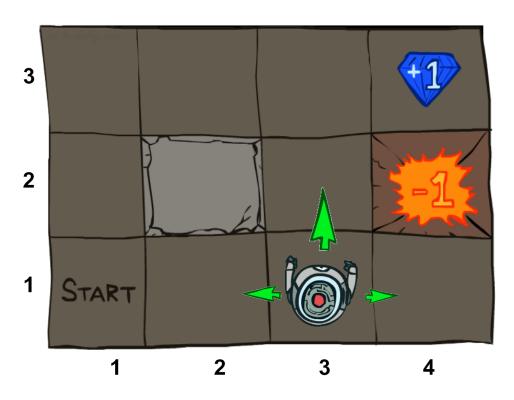


Stochastic Grid World



Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon



What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

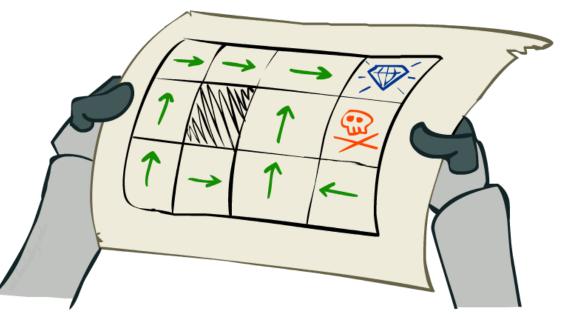
=

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

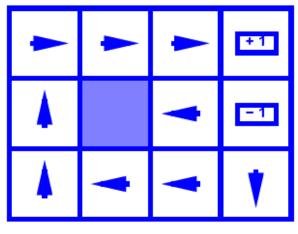
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

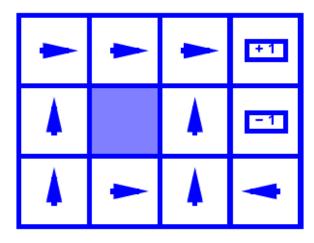


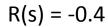
Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

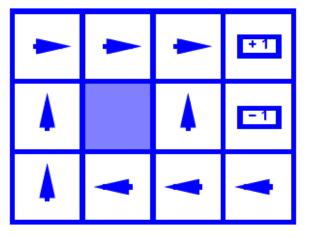
Optimal Policies



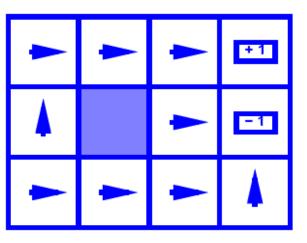
R(s) = -0.01



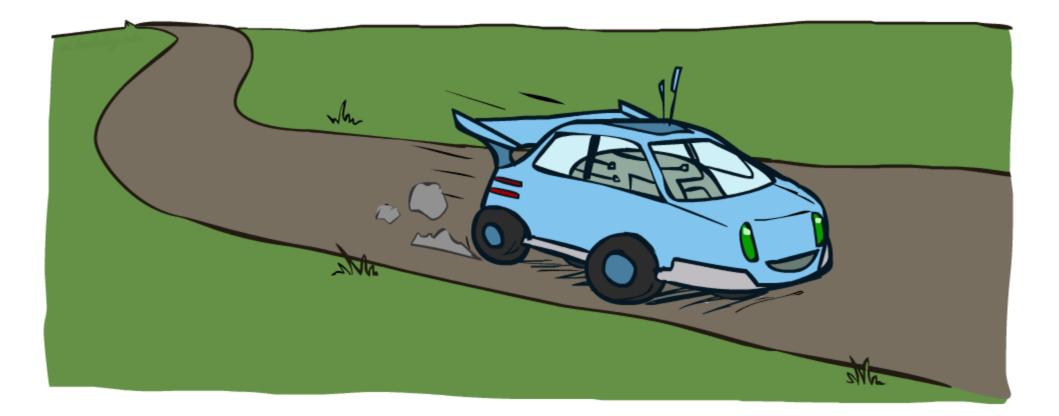




R(s) = -0.03

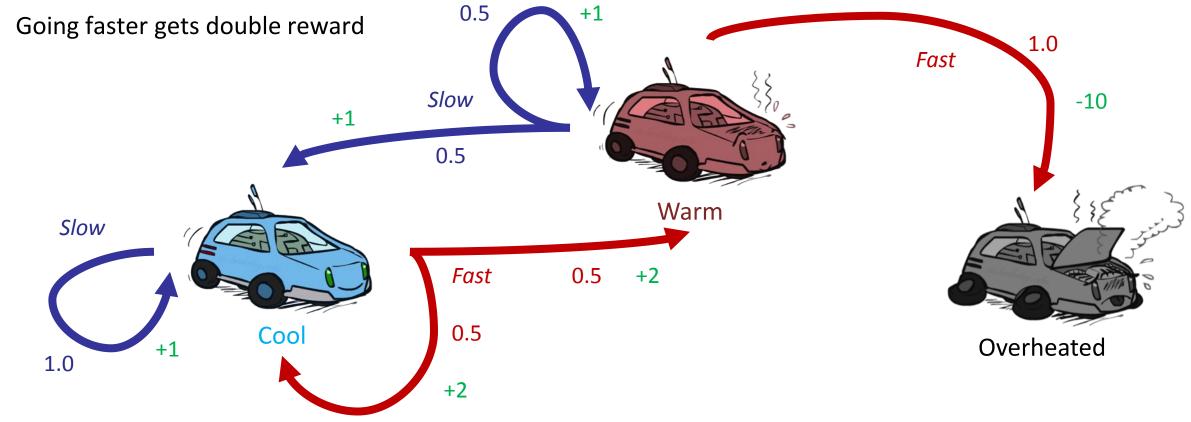


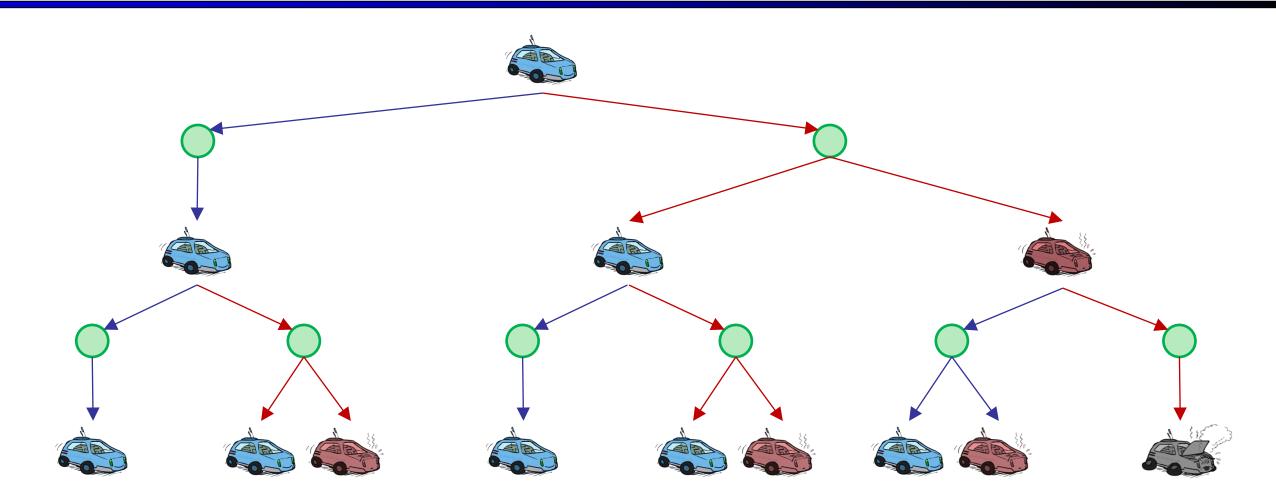
Example: Racing



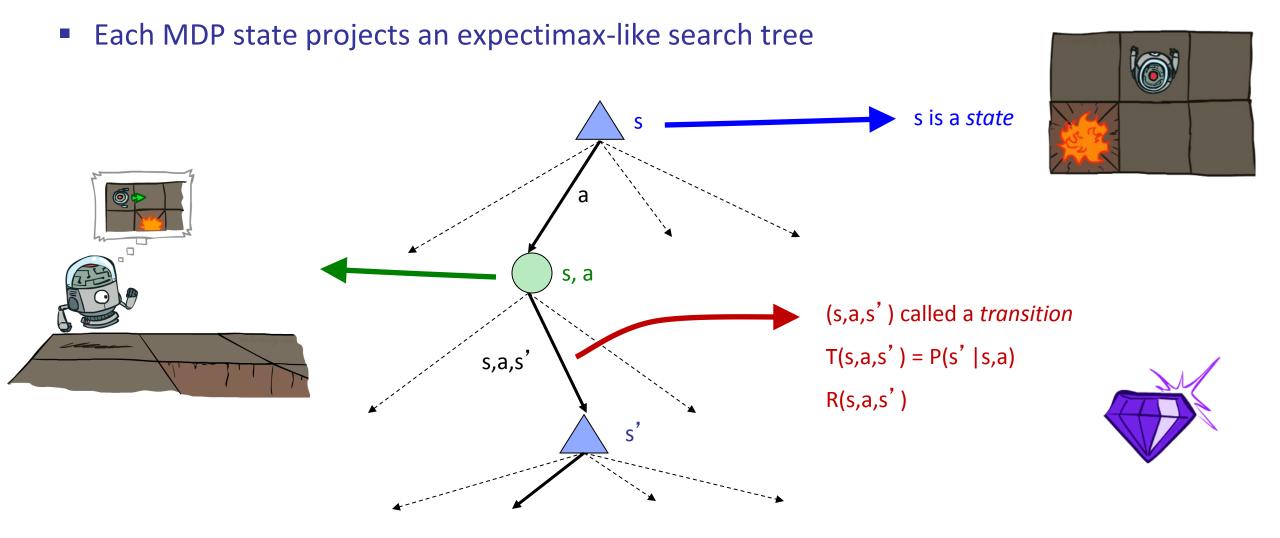
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast

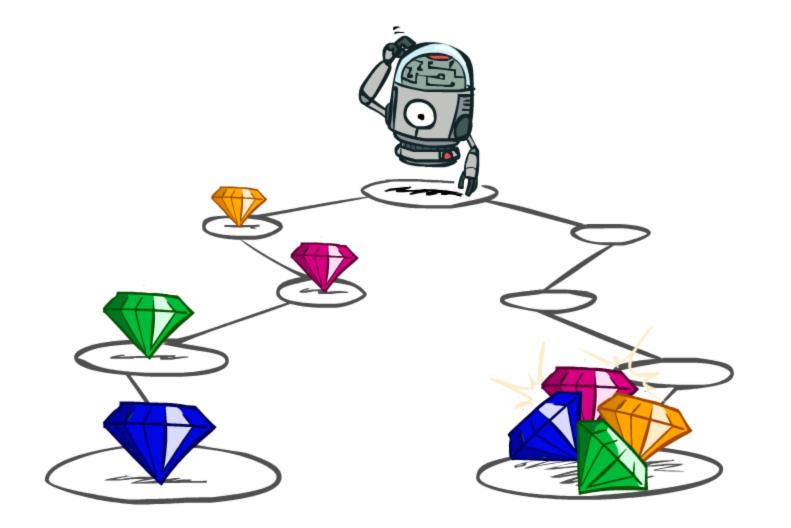




MDP Search Trees

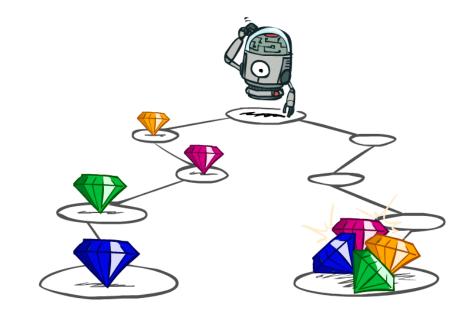


Utilities of Sequences



Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

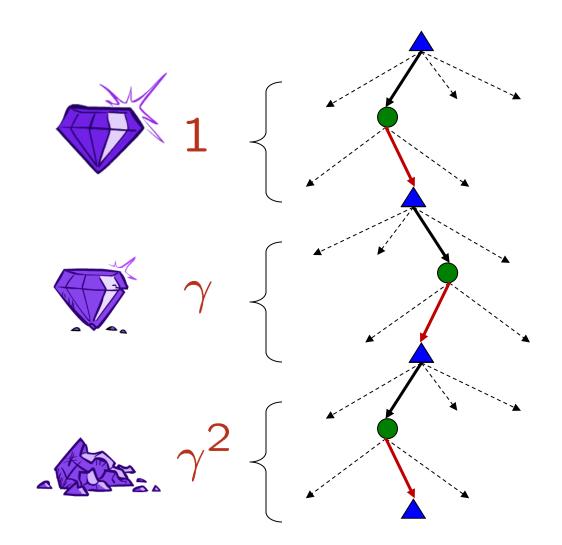


Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])</p>

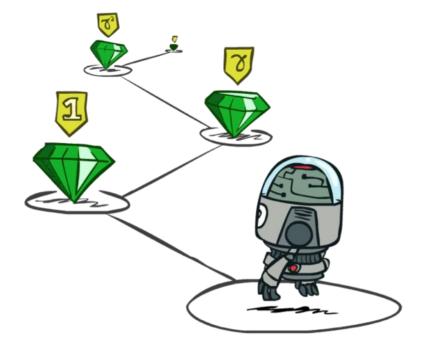


Stationary Preferences

Theorem: if we assume stationary preferences:

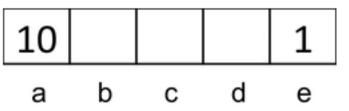
$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$



- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Quiz: Discounting



- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For γ = 0.1, what is the optimal policy?

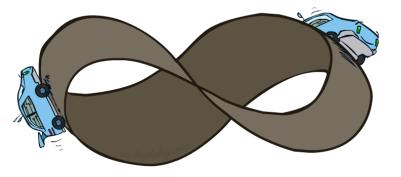
Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

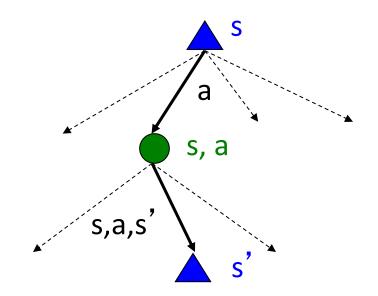
$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

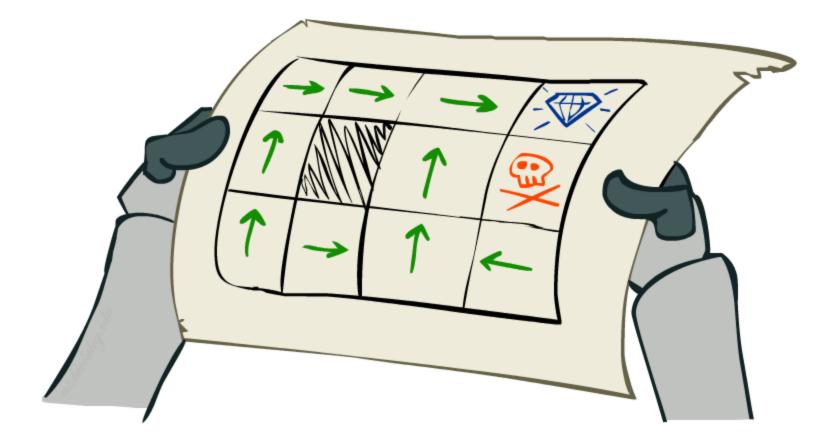


Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

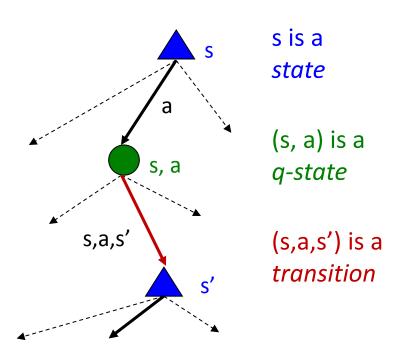


Solving MDPs



Optimal Quantities

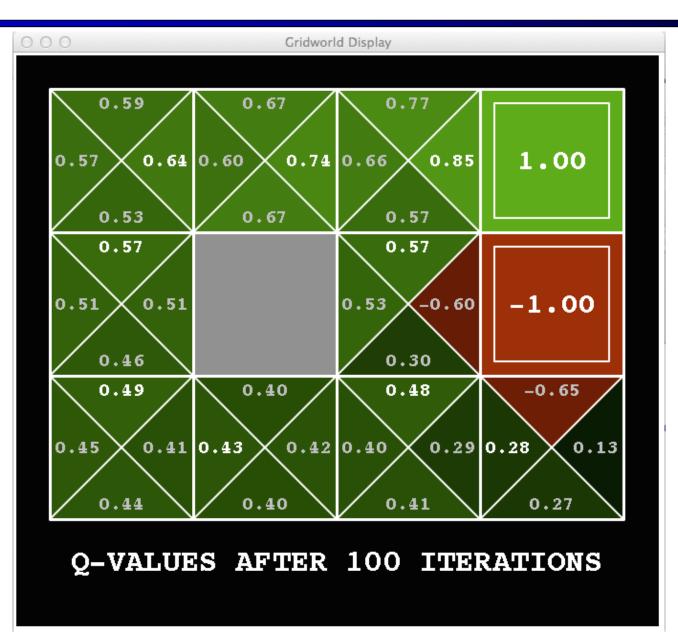
- The value (utility) of a state s:
 - V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s



Snapshot of Demo – Gridworld V Values

Gridworld Display				
0.64	0.74 →	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.43	▲ 0.48	∢ 0.28	
VALUES AFTER 100 ITERATIONS				

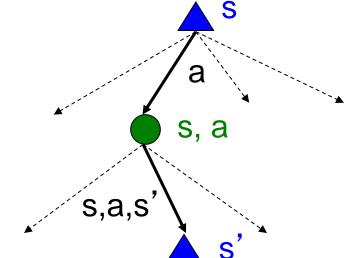
Snapshot of Demo – Gridworld Q Values

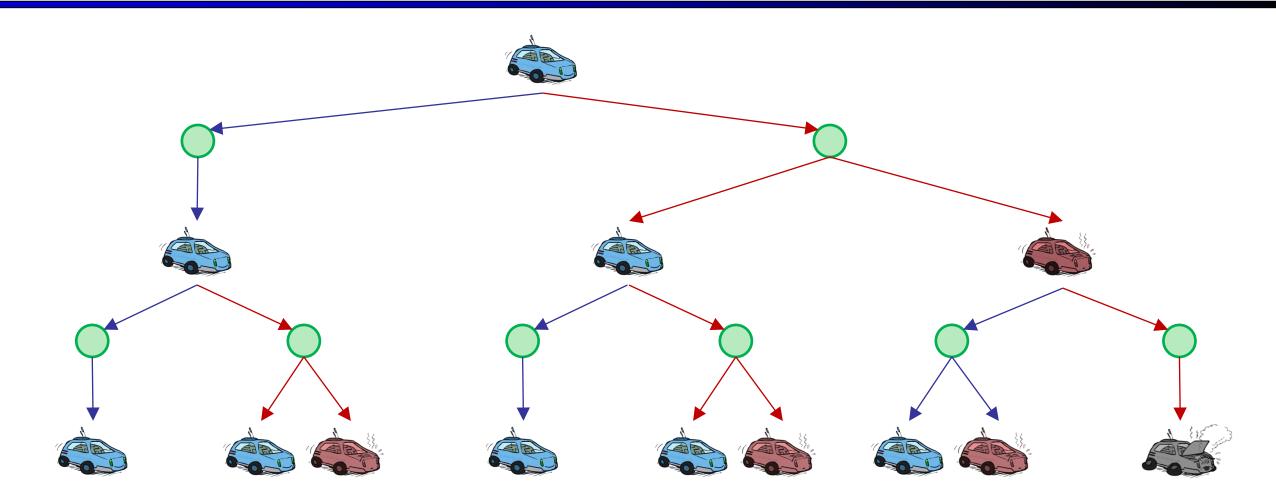


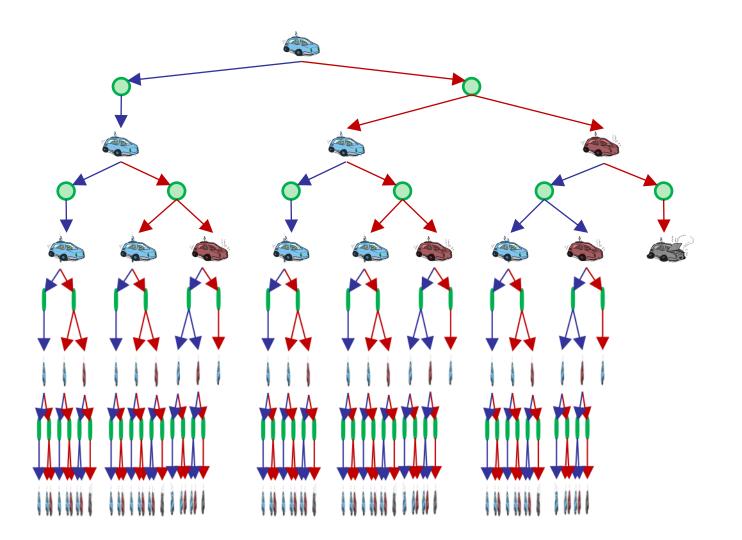
Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

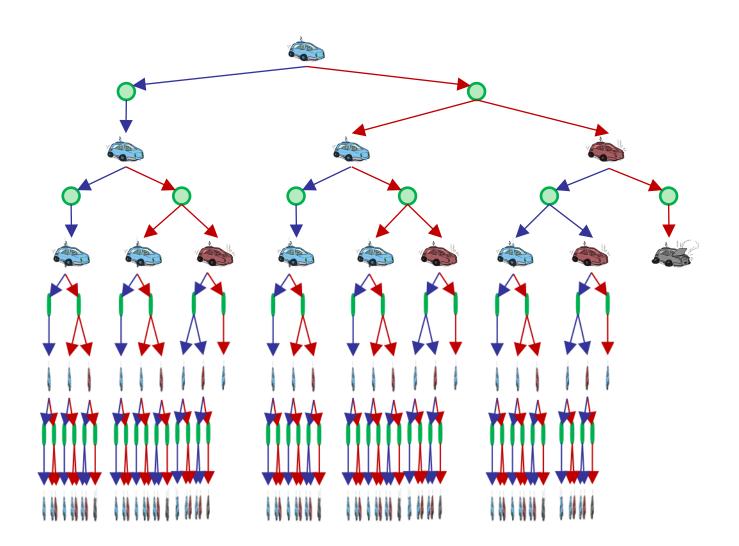
$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$





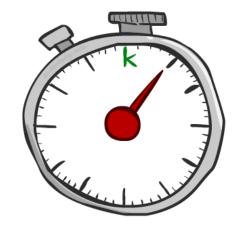


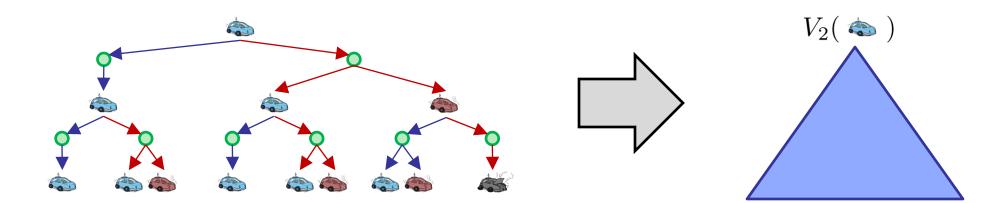
- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1



Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s





○ ○ Gridworld Display				
0.00	0.00	0.00	0.00	
		^		
0.00		0.00	0.00	
		^		
0.00	0.00	0.00	0.00	
VALUES AFTER O ITERATIONS				

0 0	0	Gridworl	d Display		
	•	•			
	0.00	0.00	0.00 →	1.00	
	^				
	0.00		∢ 0.00	-1.00	
	•	•	•		
	0.00	0.00	0.00	0.00	
				•	
	VALUES AFTER 1 ITERATIONS				

0 0	Gridworl	d Display	
•	0.00 >	0.72)	1.00
• 0.00		• 0.00	-1.00
•	• 0.00	• 0.00	0.00
VALUES AFTER 2 ITERATIONS			

k=3

0	O O Gridworld Display			
	0.00 >	0.52 →	0.78)	1.00
	• 0.00		• 0.43	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUES AFTER 3 ITERATIONS			

k=4

00	0	Gridworl	d Display	
	0.37 ▸	0.66)	0.83)	1.00
	• 0.00		• 0.51	-1.00
	• 0.00	0.00 →	• 0.31	∢ 0.00
	VALUES AFTER 4 ITERATIONS			

00	0	Gridworl	d Display	
	0.51 →	0.72 →	0.84)	1.00
	• 0.27		• 0.55	-1.00
	• 0.00	0.22 →	• 0.37	∢ 0.13
	VALUES AFTER 5 ITERATIONS			

00	○ ○ ○ Gridworld Display			
	0.59 →	0.73 →	0.85)	1.00
	• 0.41		• 0.57	-1.00
	• 0.21	0.31 →	• 0.43	∢ 0.19
VALUES AFTER 6 ITERATIONS				

00	○ ○ ○ Gridworld Display			
	0.62 ▸	0.74 →	0.85)	1.00
	• 0.50		• 0.57	-1.00
	▲ 0.34	0.36 →	▲ 0.45	◀ 0.24
	VALUE	S AFTER	7 ITERA	FIONS

0 0	Gridworld Display			
	0.63)	0.74 →	0.85)	1.00
	^		^	
	0.53		0.57	-1.00
	^		•	
	0.42	0.39 →	0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

00	0	Gridworl	d Display	
	0.64)	0.74 →	0.85)	1.00
	• 0.55		▲ 0.57	-1.00
	▲ 0.46	0.40 →	• 0.47	∢ 0.27
VALUES AFTER 9 ITERATIONS				

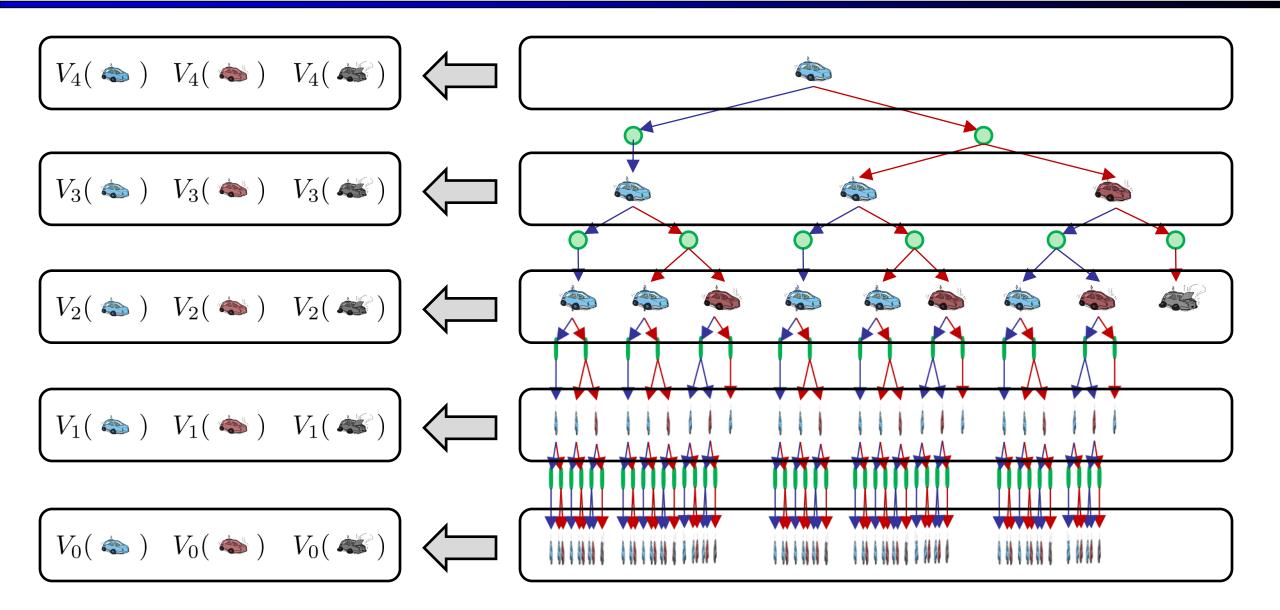
00	C C C Gridworld Display				
	0.64 ♪	0.74)	0.85)	1.00	
	▲ 0.56		• 0.57	-1.00	
	▲ 0.48	∢ 0.41	• 0.47	∢ 0.27	
	VALUES AFTER 10 ITERATIONS				

C Cridworld Display				
0.64)	0.74 ▸	0.85)	1.00	
▲ 0.56		• 0.57	-1.00	
▲ 0.48	∢ 0.42	• 0.47	∢ 0.27	
VALUE	S AFTER	11 ITERA	TIONS	

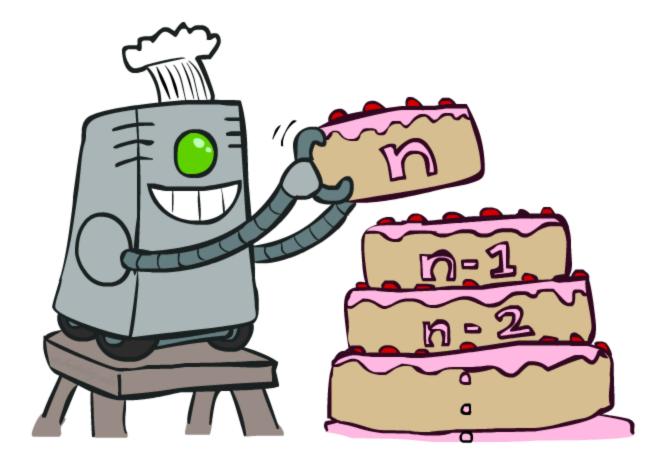
00	○ ○ ○ Gridworld Display				
	0.64 →	0.74 ▸	0.85)	1.00	
	• 0.57		▲ 0.57	-1.00	
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

Gridworld Display			
0.64 →	0.74 →	0.85)	1.00
• 0.57		• 0.57	-1.00
▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28
VALUES	AFTER 1	LOO ITERA	ATIONS

Computing Time-Limited Values



Value Iteration

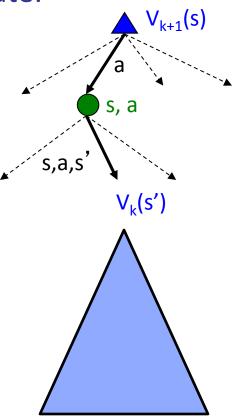


Value Iteration

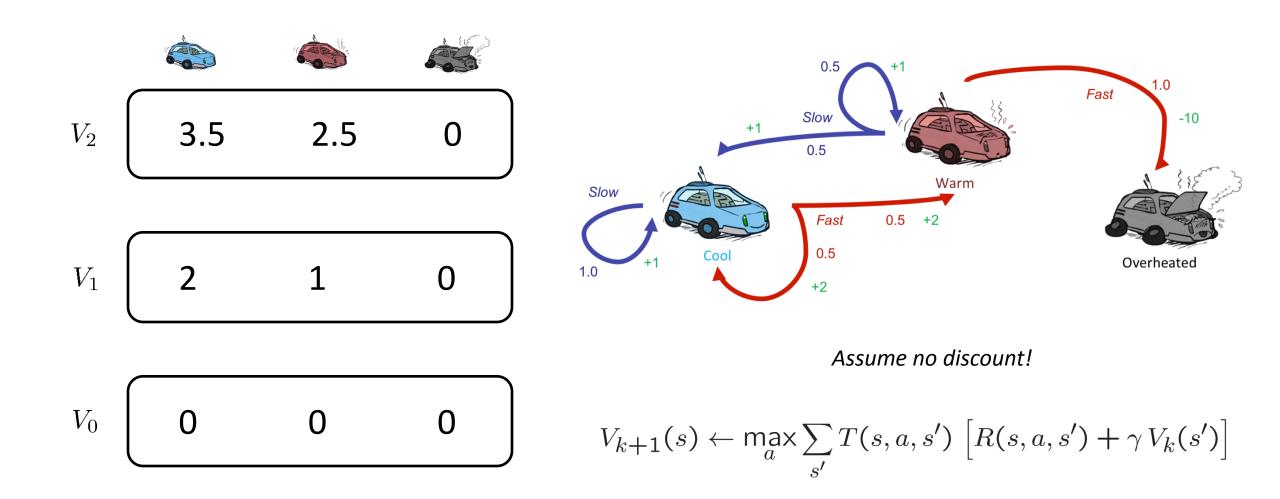
- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

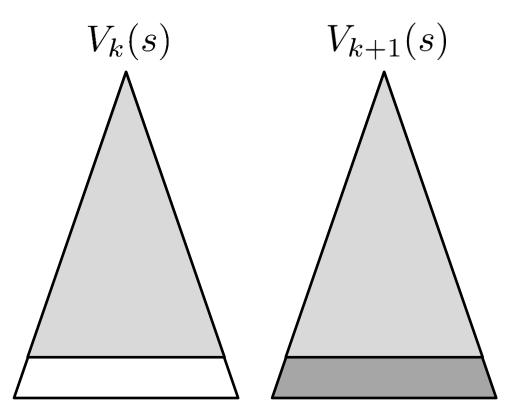


Example: Value Iteration



Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max | R | different
 - So as k increases, the values converge



Today

- Non-deterministic Search
- Utilities of Sequences
- Solving MDPs
- Value Iteration

