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 Screen Output 
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Simple Screen Output 

 System.out.println("The count is " + count); 

 

• Outputs the sting literal "the count is "  

• Followed by the current value of the variable count. 
 

• We've seen several examples of screen output 
already. 
• System.out is an object that is part of Java. 

• println() is one of the methods available to the 
System.out object. 

 



Screen Output 

• The concatenation operator (+) is useful when everything 

does not fit on one line.   
System.out.println("Lucky number = " + 13 + 

"Secret number = " + number); 

• Do not break the line except before or after the 
concatenation operator (+). 



Screen Output 

• Alternatively, use  print() 

System.out.print("One, two,"); 

System.out.print(" buckle my shoe."); 

System.out.println(" Three, four,"); 

System.out.println(" shut the door."); 

ending with a   println(). 



FORMATTED PRINTING 



Pretty Text Formatting 

• printf-style formatting 

• Common way to nicely format output 

• Present in many programming languages 

• Java, C++, Perl, PHP, ... 

•  Use a special format language: 

• Format string with special codes 

• One or more variables get filled in 

• In Java, used via: 

• System.out.printf() – output to standard out 

• String.format() – returns a formatted String 
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Floating-Point Formatting 
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double d = 0.123456789; 
float  f = 0.123456789f; 
 
// %f code is used with double or float variables 
// %f defaults to rounding to 6 decimal places 
System.out.printf("d is about %f\n", d); 
System.out.printf("f is about %f\n", f); 
 
  
 
// Number of decimal places specified by .X 
// Output is rounded to that number of places    
System.out.printf("PI is about %.1f\n", Math.PI); 
System.out.printf("PI is about %.2f\n", Math.PI); 
System.out.printf("PI is about %.3f\n", Math.PI); 
System.out.printf("PI is about %.4f\n", Math.PI); 
 
 
// %e code outputs in scientific notation 
// .X specifies number of significant figures   
final double C = 299792458.0;  
System.out.printf("speed of light = %e\n", C); 
System.out.printf("speed of light = %.3e\n", C); 
  

d is about 0.123457 
f is about 0.123457 

PI is about 3.1 
PI is about 3.14 
PI is about 3.142 
PI is about 3.1416 

C = 2.99792e+08 
C = 2.998e+08 

\n means line feed 



Integer Formatting 
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// %d code is for integer values, int or long 
// Multiple % codes can be used in a single printf() 
long power = 1; 
for (int i = 0; i < 8; i++) 
{ 
   System.out.printf("%d = 2^%d\n", power, i); 
   power = power * 2; 
} 
   
 
 
 
// A number after the % indicates the minimum width 
// Good for making a nice looking tables of values 
power = 1; 
for (int i = 0; i < 8; i++) 
{ 
   System.out.printf("%5d = 2^%d\n", power, i); 
   power = power * 2; 
} 

1 = 2^0 
2 = 2^1 
4 = 2^2 
8 = 2^3 
16 = 2^4 
32 = 2^5 
64 = 2^6 
128 = 2^7 

    1 = 2^0 
    2 = 2^1 
    4 = 2^2 
    8 = 2^3 
   16 = 2^4 
   32 = 2^5 
   64 = 2^6 
  128 = 2^7 

You can have multiple % codes that 

are filled in by a list of parameters to 

printf() 

Minimum width of this field in the output.  Java 

will pad with whitespace to reach this width 

(but can exceed this width if necessary). 



Flags 
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// Same table, but left justify the first field 
power = 1; 
for (int i = 0; i < 8; i++) 
{ 
   System.out.printf("%-5d = 2^%d\n", power, i); 
   power = power * 2; 
} 
 
 
 
 
 
// Use commas when displaying numbers 
power = 1; 
for (int i = 0; i < 17; i++) 
{ 
   System.out.printf("%,5d = 2^%d\n", power, i); 
   power = power * 2; 
} 

1     = 2^0 
2     = 2^1 
4     = 2^2 
8     = 2^3 
16    = 2^4 
32    = 2^5 
64    = 2^6 
128   = 2^7 

- flag causes this field to be left 

justified 

, flag causes commas 

between groups of 3 digits 

    1 = 2^0 
    2 = 2^1 
    4 = 2^2 
    8 = 2^3 
   16 = 2^4 
   32 = 2^5 
   64 = 2^6 
  128 = 2^7 
  256 = 2^8 
  512 = 2^9 
1,024 = 2^10 
2,048 = 2^11 
4,096 = 2^12 
8,192 = 2^13 
16,384 = 2^14 
32,768 = 2^15 
65,536 = 2^16 



Text Formatting 
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// Characters can be output with %c, strings using %s 
String name = "Bill"; 
char grade = 'B'; 
System.out.printf("%s got a %c in the class.\n", name, grade); 
   

Bill got a B in the class. 

// This prints the same thing without using printf 
System.out.println(name + " got a " + grade + " in the class."); 
 

An equivalent way to print the same thing out using good old println(). 



Creating Formatted Strings 

• Formatted String creation 

• You don't always want to immediately print formatted text to 

standard output 

• Save in a String variable for later use 
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// Formatted Strings can be created using format() 
String lines = ""; 
for (int i = 0; i < 4; i++) 
   lines += String.format("Random number %d = %.2f\n", i, Math.random()); 
System.out.print(lines); 

Random number 0 = 0.54 
Random number 1 = 0.50 
Random number 2 = 0.39 
Random number 3 = 0.64 



The Format Specifier 
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% [flags][width][.precision]type 

Type is the only required 

part of specifier.  "d" for 

an integer, "f" for a 

floating-point number 

Sets the number 

of decimal places, 

don't forget the . 

Minimum number of character 

used, but if number is longer 

it won't get cut off 

Special formatting 

options like 

inserting commas, 

making left 

justified, etc. 

System.out.printf("%,6.1f", 42.0); 

%[flags][width][.precision]type 



printf Gone Bad 

• Format string specifies: 

• Number of variables to fill in 

• Type of those variables 

• With great power comes great responsibility 

• Format must agree with #/types of arguments 

• Runtime error otherwise 

• Compiler / Eclipse won't protect you  
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// Runtime error %f expects a floating-point argument 
System.out.printf("crash %f\n", 1); 
 

// Runtime error, %d expects an integer argument 
System.out.printf("crash %d\n", 1.23); 
 

// Runtime error, not enough arguments  
System.out.printf("crash %d %d\n", 2); 



printf Puzzler 
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Letter Output 

A 4242 

B 4242.00 

C 4.242e+03 

D 4,242 

E 4242.000000 

Code Letter 

System.out.printf("%f",   4242.00); 

System.out.printf("%d",   4242); 

System.out.printf("%.2f", 4242.0); 

System.out.printf("%.3e", (double) 4242); 

System.out.printf("%,d",  4242); 

Code # 

System.out.printf("%d%d", 42, 42); 

System.out.printf("%d+%d", 42, 42); 

System.out.printf("%d %d", 42); 

System.out.printf("%8d", 42); 

System.out.printf("%-8d", 42); 

System.out.printf("%d",  42.0); 

# Output 

1 42+42 

2 4242 

3       42 

4 42 

5 runtime error 
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Keyboard Input 

• Java has reasonable facilities for handling 

keyboard input. 

• These facilities are provided by the Scanner 

class in the java.util package. 

• A package is a library of classes. 



Simple Input 

• Sometimes the data needed for a computation 

are obtained from the user at run time. 

• Keyboard input requires 

 import java.util.Scanner 

 at the beginning of the file. 



Simple Input 

• Data can be entered from the keyboard using
 Scanner keyboard =  

   new Scanner(System.in); 

 followed, for example, by 

 eggsPerBasket = keyboard.nextInt(); 

 which reads one int value from the keyboard 

and assigns it to eggsPerBasket. 



Using the Scanner Class 

• Near the beginning of your program, insert 
import java.util.Scanner; 

• Create an object of the Scanner class 
Scanner keyboard =  

  new Scanner (System.in) 

• Read data (an int or a double, for example) 
int n1 = keyboard.nextInt(); 

double d1 = keyboard,nextDouble(); 

• Close the Scanner 
keyboard.close(); 

 

 



Some Scanner Class Methods 



Some Scanner Class Methods 

• Figure 2.7b 



nextLine()Method Caution 

• The nextLine() method reads  

• The remainder of the current line,  

• Even if it is empty. 
 

• Example – given following declaration. 
  int n; 

String s1, s2; 

n = keyboard.nextInt(); 

s1 = keyboard.nextLine(); 

s2 = keyboard.nextLine(); 

• Assume input shown 
 

n is set to 42 

but s1 is set to the empty string. 

42 

and don't you 

forget it. 
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