
BASIC INPUT/OUTPUT

Fundamentals of Computer Science

Outline: Basic Input/Output

 Screen Output

 Keyboard Input

Simple Screen Output

 System.out.println("The count is " + count);

• Outputs the sting literal "the count is "

• Followed by the current value of the variable count.

• We've seen several examples of screen output
already.
• System.out is an object that is part of Java.

• println() is one of the methods available to the
System.out object.

Screen Output

• The concatenation operator (+) is useful when everything

does not fit on one line.
System.out.println("Lucky number = " + 13 +

"Secret number = " + number);

• Do not break the line except before or after the
concatenation operator (+).

Screen Output

• Alternatively, use print()

System.out.print("One, two,");

System.out.print(" buckle my shoe.");

System.out.println(" Three, four,");

System.out.println(" shut the door.");

ending with a println().

FORMATTED PRINTING

Pretty Text Formatting

• printf-style formatting

• Common way to nicely format output

• Present in many programming languages

• Java, C++, Perl, PHP, ...

• Use a special format language:

• Format string with special codes

• One or more variables get filled in

• In Java, used via:

• System.out.printf() – output to standard out

• String.format() – returns a formatted String

7

Floating-Point Formatting

8

double d = 0.123456789;
float f = 0.123456789f;

// %f code is used with double or float variables
// %f defaults to rounding to 6 decimal places
System.out.printf("d is about %f\n", d);
System.out.printf("f is about %f\n", f);

// Number of decimal places specified by .X
// Output is rounded to that number of places
System.out.printf("PI is about %.1f\n", Math.PI);
System.out.printf("PI is about %.2f\n", Math.PI);
System.out.printf("PI is about %.3f\n", Math.PI);
System.out.printf("PI is about %.4f\n", Math.PI);

// %e code outputs in scientific notation
// .X specifies number of significant figures
final double C = 299792458.0;
System.out.printf("speed of light = %e\n", C);
System.out.printf("speed of light = %.3e\n", C);

d is about 0.123457
f is about 0.123457

PI is about 3.1
PI is about 3.14
PI is about 3.142
PI is about 3.1416

C = 2.99792e+08
C = 2.998e+08

\n means line feed

Integer Formatting

9

// %d code is for integer values, int or long
// Multiple % codes can be used in a single printf()
long power = 1;
for (int i = 0; i < 8; i++)
{
 System.out.printf("%d = 2^%d\n", power, i);
 power = power * 2;
}

// A number after the % indicates the minimum width
// Good for making a nice looking tables of values
power = 1;
for (int i = 0; i < 8; i++)
{
 System.out.printf("%5d = 2^%d\n", power, i);
 power = power * 2;
}

1 = 2^0
2 = 2^1
4 = 2^2
8 = 2^3
16 = 2^4
32 = 2^5
64 = 2^6
128 = 2^7

 1 = 2^0
 2 = 2^1
 4 = 2^2
 8 = 2^3
 16 = 2^4
 32 = 2^5
 64 = 2^6
 128 = 2^7

You can have multiple % codes that

are filled in by a list of parameters to

printf()

Minimum width of this field in the output. Java

will pad with whitespace to reach this width

(but can exceed this width if necessary).

Flags

10

// Same table, but left justify the first field
power = 1;
for (int i = 0; i < 8; i++)
{
 System.out.printf("%-5d = 2^%d\n", power, i);
 power = power * 2;
}

// Use commas when displaying numbers
power = 1;
for (int i = 0; i < 17; i++)
{
 System.out.printf("%,5d = 2^%d\n", power, i);
 power = power * 2;
}

1 = 2^0
2 = 2^1
4 = 2^2
8 = 2^3
16 = 2^4
32 = 2^5
64 = 2^6
128 = 2^7

- flag causes this field to be left

justified

, flag causes commas

between groups of 3 digits

 1 = 2^0
 2 = 2^1
 4 = 2^2
 8 = 2^3
 16 = 2^4
 32 = 2^5
 64 = 2^6
 128 = 2^7
 256 = 2^8
 512 = 2^9
1,024 = 2^10
2,048 = 2^11
4,096 = 2^12
8,192 = 2^13
16,384 = 2^14
32,768 = 2^15
65,536 = 2^16

Text Formatting

11

// Characters can be output with %c, strings using %s
String name = "Bill";
char grade = 'B';
System.out.printf("%s got a %c in the class.\n", name, grade);

Bill got a B in the class.

// This prints the same thing without using printf
System.out.println(name + " got a " + grade + " in the class.");

An equivalent way to print the same thing out using good old println().

Creating Formatted Strings

• Formatted String creation

• You don't always want to immediately print formatted text to

standard output

• Save in a String variable for later use

12

// Formatted Strings can be created using format()
String lines = "";
for (int i = 0; i < 4; i++)
 lines += String.format("Random number %d = %.2f\n", i, Math.random());
System.out.print(lines);

Random number 0 = 0.54
Random number 1 = 0.50
Random number 2 = 0.39
Random number 3 = 0.64

The Format Specifier

13

% [flags][width][.precision]type

Type is the only required

part of specifier. "d" for

an integer, "f" for a

floating-point number

Sets the number

of decimal places,

don't forget the .

Minimum number of character

used, but if number is longer

it won't get cut off

Special formatting

options like

inserting commas,

making left

justified, etc.

System.out.printf("%,6.1f", 42.0);

%[flags][width][.precision]type

printf Gone Bad

• Format string specifies:

• Number of variables to fill in

• Type of those variables

• With great power comes great responsibility

• Format must agree with #/types of arguments

• Runtime error otherwise

• Compiler / Eclipse won't protect you

14

// Runtime error %f expects a floating-point argument
System.out.printf("crash %f\n", 1);

// Runtime error, %d expects an integer argument
System.out.printf("crash %d\n", 1.23);

// Runtime error, not enough arguments
System.out.printf("crash %d %d\n", 2);

printf Puzzler

15

Letter Output

A 4242

B 4242.00

C 4.242e+03

D 4,242

E 4242.000000

Code Letter

System.out.printf("%f", 4242.00);

System.out.printf("%d", 4242);

System.out.printf("%.2f", 4242.0);

System.out.printf("%.3e", (double) 4242);

System.out.printf("%,d", 4242);

Code #

System.out.printf("%d%d", 42, 42);

System.out.printf("%d+%d", 42, 42);

System.out.printf("%d %d", 42);

System.out.printf("%8d", 42);

System.out.printf("%-8d", 42);

System.out.printf("%d", 42.0);

Output

1 42+42

2 4242

3 42

4 42

5 runtime error

E

A

B

C

D

2

1

5

3

4

5

Keyboard Input

• Java has reasonable facilities for handling

keyboard input.

• These facilities are provided by the Scanner

class in the java.util package.

• A package is a library of classes.

Simple Input

• Sometimes the data needed for a computation

are obtained from the user at run time.

• Keyboard input requires

 import java.util.Scanner

 at the beginning of the file.

Simple Input

• Data can be entered from the keyboard using
 Scanner keyboard =

 new Scanner(System.in);

 followed, for example, by

 eggsPerBasket = keyboard.nextInt();

 which reads one int value from the keyboard

and assigns it to eggsPerBasket.

Using the Scanner Class

• Near the beginning of your program, insert
import java.util.Scanner;

• Create an object of the Scanner class
Scanner keyboard =

 new Scanner (System.in)

• Read data (an int or a double, for example)
int n1 = keyboard.nextInt();

double d1 = keyboard,nextDouble();

• Close the Scanner
keyboard.close();

Some Scanner Class Methods

Some Scanner Class Methods

• Figure 2.7b

nextLine()Method Caution

• The nextLine() method reads

• The remainder of the current line,

• Even if it is empty.

• Example – given following declaration.
 int n;

String s1, s2;

n = keyboard.nextInt();

s1 = keyboard.nextLine();

s2 = keyboard.nextLine();

• Assume input shown

n is set to 42

but s1 is set to the empty string.

42

and don't you

forget it.

Outline: Basic Input/Output

 Screen Output

 Keyboard Input

