MULTI-DIMENSIONAL ARRAYS

Fundamentals of Computer Science |

Outline

- Arrays Revisited

- Two-Dimensional Arrays
- Multidimensional Arrays
- Ragged Arrays

Arrays revisited

- Arrays
- Store a bunch of values under one name
- Declare and create in one line:

int N = 8;

int [] X = new int[10];
double [] speeds = new double[100];
String [] names = new String[N];

- To get at values, use name and index between

int sumFirst2 = x[0] + x[1];
speeds[99] = speeds[98] * 1.1;
System.out.println(names[0@]);

- Array indexes start at O!

Arrays revisited
- Arrays
- You can just declare an array:

int [] x;
- But x is not very useful until you "new" it:

int [] x;
X = new int[7];

* New creates the memory for the slots

- Each slot holds an independent int value
- Each slot initialized to default value for type

T TaTo o

int int int int int int int

4

Arrays revisited

bt

int int int int int int int
\ J
|

X
e Variable x refers to the whole set of slots

* You can't use the variable x by itself for much
e Except for finding out the number of slots: x.length

Arrays revisited

x[e] x[1] x[2] x[3] x[4] x[5] x[6]

bt

int int int int int int int
\ J
|

X

« x[0],x[1],..,x[6] refers to value at a particular slot
e X[-1] orx[7] =ArrayIndexOutOfBoundsException

Arrays revisited

x[e] x[1] x[2] x[3] x[4] x[5] x[6]

1010100 G~ «
o | 2 3 & 5 b
Int Int int Iint Int Int int

\ J
|

X
« x[1i] refers to the value at a slot, but the slot index is

determined by variable i
 Ifi=0then x[0],ifi=1then x[1], etc.
 Whatever inside [] must be an int
 Whatever inside [] must be in 0 to x.length - 1
(inclusive)

Two dimensional array examples

- Two dimensional arrays

- Tables of hourly temps for last week

- Table of colors for each pixel of a 2D image

- Table storing piece at each position on a checkerboard

oh_|inh |.. 230
32. 30 45

0

5

59.

5

60.

Z

62.

6

62.

1

61.

8

62.

0

6

60.
0

70.
5

68.
0

D
Weather data

- Goal: Read in hourly temp data for last week
- Each row is a day of the week

- Each column is a particular hour of the day
20:53

I
48.9(48.0|46.0(45.0|46.9|45.0|48.2 I 59.0|57.9(57.9|57.2(54.0(b0.0(#8.9|46.9|44.6|45.0

43.0(39.9|37.9(37.4|39.0|39.0|39.0(39.0|37.9(39.2|41.0(41.0|41.0(39.0|37.9(36.0}35.633.8|32.0(32.0|30.2

30.4(28.04{27.0(23.0(23.0{23.0{19.9/19.0|19.0|23.0|30.9|33.1|34.0|37.0|35.6|36.0|32.0(32.0 32.0{7.0 27.0(25.0(21.9|23.0

21.9121.0§21.0(21.0{19.4|17.6|17.6|17.6|19.4|19.0|21.0|26.1|34.0|37.4|39.0(41.0{41.0(39.0(37.0(B7.0(B7.0(34.0(35.1|34.0

33.8|32.0137.0(30.9/32.0(34.0|33.1|30.9(32.0|35.1(39.0|41.0(39.9|42.1|43.0(43.0|42.1|39.9|36.0|B3.1|{p7.0|25.0(23.0|19.9

19.9119.0]18.0|16.0|16.0|15.1|14.0|14.0|15.1|21.0 52.0(50.0(51.1|50.0({46.0|8.9(#14.1|44.1|39.9|39.2

10/29/11
46.0|16.0[45.0(44.6|44.1|44.1(44.1|44.1|42.1|42.1|42.8|44.1|45.0(46.9(46.0(44.1|44.1|42.8(39.0($7.0|B5.1|35.1{30.9 30.0)

=0

Two dimensional arrays

- Declaring and creating

- Like 1D, but another pair of brackets:

final int DAYS
final int HOURS
double [][] a =

=7;
= 24;

new double[DAYS][HOURS];

- To specify element at the it" row and j" column:

Ia[i][j] \

Temperature
a[e][e] a[e][1] a[e][2] a[e][22] | a[e][23] on second day
a[1][e] | a[1][1] | a[1][2] a[1][22] | a[1][23] £ of data, last

hour of day
a[e][e] a[6][1] a[6][2] a[6][22] | a[6][23]

Reading temperature data
- Initialize all elements of our 2D array

- Nested loop reading in each value from keyboard
- Find weekly max and min temp

final int DAYS = 7; Start the min at a
final int HOURS = 24; really high temp.
double [][] a = new double[DAYS][HOURSL/

double min = Double.POSTIVE INFINITY; Start the max at a

double max = Double.NEGATIVE INFINITY; &/ really low temp.

for (int row = @; row < DAYS; row++)

{ :
for (int col = @; col < HOURS; col++) The new min temp
{ is either the current
a[row][col] = keyboard.nextDouble(); min or the new
min = Math.min(min, a[row][col]); ‘F-——’//, data point.
max = Math.max(max, a[row][col]);
}
}

System.out.println("min = " + min + ", max = " + max);

Another Example

Savings Account Balances for Various Interest Rates Compounded Annually
(Rounded to Whole Dollar Amounts)

Year 5.0 % 5.50% 6.00% 6.50% 7.00% 7.50%
1 $1050 $1055 $1060 $1065 $1070 $1075
2 $1103 $1113 $1124 $1134 $1145 $1156
3 $1158 $1174 $1191 $1208 $1225 $1242
4 $1216 $1239 $1262 $1286 $1311 $1335
5 $1276 $1307 $1338 $1370 $1403 $1436
6 $1340 $1379 $1419 $1459 $1501 $1543
7 $1407 $1455 $1504 $1554 $1606 $1659
3 $1477 $1535 $15904 $1655 $1718 $1783
9 $1551 $1619 $1689 $1763 $1838 $1917
10 $1620 $1708 $1791 $1877 $1967 $2061

Multidimensional-Array Basics

- Figure 7.7 Row and column indices for an array named
table

Row index 3 Column index 2

Y

Indices 0 1 2 3 4 5

0 [$1050 $1055 $1060 $1065 $1070 $1075
$1103 $1113 $1124 $1134 $1145 $1156
$1158 $1174 $1191 $1208 $1225 $1242
$1216 $1239 $1235 $1311 $1335
$1276 $1307 $1338 $1370 $1403 $1436
$1340 $1379 $1419 $1459 $1501 $1543
$1407 $1455 $1504 $1554 $1606 $1659
$1477 $1535 $1594 $1655 $1718 $1783
$1551 $1619 $1689 $1763 $1838 $1917
$1620 $1708 $1791 $1877 $1967 $2061

L T v T o T L T Y

Multidimensional-Array Basics

- We can access elements of the table with a nested for
loop

- Example:

for (int row = 0: row < 10; row++)
for (int column = 0; column < 6; column++)
table[row] [column] =
balance(1000.00, row + 1, (5 + 0.5 * column));

Multidimensional-Array Basics

Balances for Various Interest Rates Compounded Annually
(Rounded to Whole Dollar Amounts)

5.00% 5.50% 6.00% 6.50% 7.00% 7.50%

$1050 $1055 $1060 $1065 $1070 31075
$1103 $1113 $1124 $1134 $1145 31156
$1158 $1174 $1191 $1208 $1225 31242
$1216 $1239 $1262 $1286 $1311 $1335
$1276 $1307 $1338 $1370 $1403 31436
$1340 $1379 $1419 $1459 $1501 $1543
$1407 $1455 $1504 $1554 $1606 31659
$1477 $1535 $1594 $1655 $1718 31783
$1551 $1619 $1689 $1763 $1838 $1917
$1629 31708 $1791 $1877 $1967 32061

Years

O o =l v u s w2

Java's Representation of Multidimensional
Arrays

- Multidimensional array represented as several
one-dimensional arrays

- Glven
int [][] table = new int [10][6];

- Array table is actually 1 dimensional of type
int|[]
- It is an array of arrays

- Important when sequencing
through multidimensional array

L
Ragged Arrays

- Not necessary for all rows to be of the same length
- Example:

int[1[] b;

b = new int[3]1[];

b[0] = new int[5]; //First row, 5 elements
b[1l] = new int[/]; //Second row, 7 elements
b[2] = new int[4]; //Third row, 4 elements

Programming Example

- Employee Time Records

- Two-dimensional array stores hours worked
- For each employee
- For each of 5 days of work week

Programming Example

Employee 1 2 3 Totals
Monday 8 0 9 17
Tuesday 8 o 9 17
Wednesday 8 8 8 24
Thursday 8 8 4 20
Friday 8 8§ 8 24

Total = 40 24

Programming Example

- Figure 7.8 Arrays for the class TimeBook

Column index Q,
used for employee number 1
3 Indices 0 il 2 S ot
Row index 2 , he total hours worked on
used for Wednesday 0 & 0 /9\ Tuesday (row index 1) by
(the hirdday) 1 |<_8 | 0 A il awloeer a1,
e C ayHours[1] is
; £ ~‘> 6 8 set to 17.
3 | I8 8 |\ 4
4 | /8 8 |\s8/
hours[2] [0] has a value of 8, The total hours worked by employee 3
indicating that on Wednesday (column index 2) is 38, so

employee 1 worked 8 hours. weekHours[2] is set 1o 38.

Summary

- Arrays Revisited

- Two-Dimensional Arrays
- Multidimensional Arrays
- Ragged Arrays

