Fuzzy Logic

Fuzzy Logic

- Aristotle: A or (xor) not(A)
- Buddha: A and not(A)
- Example: My height
 - Ex-in-laws say I'm short
 - My family says I'm tall
 - Most people would say I'm on the short side of average

Fuzzy Logic

- Rather than a fact being either 1 or 0, true or false, fuzzy logic allows partial values, represented by real numbers, to indicate the possibility of truth or falsity
- Degrees of membership rather than crisp membership

- Membership Functions
 - Classical set theory is crisp
 - $x \in X \text{ OR } x \text{ not } \in X$, but not both
 - Called the principle of dichotomy
- Membership functions (fuzzy) or Characteristic functions (crisp)

Linguistic Variables and Hedges

• A linguistic variable is a fuzzy variable

If age is young And previous_accepts are several Then life_ins_accept is high There are 3 linguistic variables here: Age

Previous_accepts Life_ins_accept

Linguistic Variables and Hedges

- We saw a continuous membership function a minute ago
- Here is one way of defining a discrete membership function for age:

Age is young:

{(0/1.0), (5/0.95), (10/0.75), (15/0.50), (20/0.35), (30/0.10), (50/0.0)}

x/y: x is the value for age, y is the degree of set membership

Note: some books put this as $\mu_A(x)/x$, with the degree of membership first ($\mu_A(x)$) and the attribute value second (x)

To find out if a person is young or not, given an age not listed, interpolate between the values

Hedges:

- All purpose modifiers: very, quite, extremely
- Truth values: quite true, mostly false
- Probabilities: likely, not very likely
 - Roy's search and rescue rules somewhat likely, etc.
- Quantifiers: most, several, few
- Possibilities: almost impossible, quite possible

- Fuzzy Set Operations
 - Complement $-\mu_{A}(x) = 1 \mu_{A}(x)$
 - Containment Elements of a subset vs. set will have lesser degrees of membership

• Intersection - $\mu_{A \cap B}(x) = \min[\mu_A(x), \mu_B(x)]$

• Union - $\mu_{AUB}(x) = \max[\mu_A(x), \mu_B(x)]$

Membership A =

Fuzzy Rules

- Crisp Rule:
 - If age < 30
 <p>And previous _accepts > = 3
 Then life_ins_promo = yes
- Fuzzy Rules:
 - Rule 1: Accept is high If age is young And previous_accepts are several Then life_ins_accept is high
 - Rule 2: Accept is moderate If age is middle-aged And previous_accepts are some Then life_ins_promo is moderate
 - Rule 3: Accept is low
 If age is old
 Then life insurance accept is low
- May have multiple antecedent clauses, joined by ANDs and ORs
- May have multiple consequents each one is affected equally by the antecedents

Fuzzy Inference

• The Process:

- 1. Fuzzification
- 2. Rule Inference
- 3. Rule Composition
- 4. Defuzzification

Fuzzy Inference

- Example:
 - Let's say we have a person who is 33 years old and has 5 previous accepts.

Table 13.1 . Life Insurance Promotion Data			
		Previous	Life Insurance
Instance #	Age	Accepts	Promotion
1	25	2	Yes
2	33	4	Yes
3	19	1	Yes
4	43	5	No
5	35	1	No
6	26	3	Yes
7	50	2	No
8	24	2	Yes
9	20	0	No
10	62	3	No
11	36	5	Yes
12	27	0	No
13	28	1	No
14	25	3	Yes

Fuzzification

Define membership functions for all linguistic (fuzzy) variables:

Previous_Accepts

Fuzzification

Define membership functions for all linguistic (fuzzy) variables:

Rule Inference

From our previous fuzzy rules... (Slide 9)

- age = middle-aged (0.25) young (0.10)
- previous_accepts = some (0.20)
 several (0.60)
- Rule 1: age = young (0.10) AND prev_accepts = some (0.25)
- These are ANDed, so use min:
 0.10 degree of membership for life_ins = high
- Rule 2: age = middle-aged (0.25) AND prev_accepts = some (0.20)
- These are ANDed, so use min again:
 0.20 degree of membership in life_ins = moderate
- Rule 3: doesn't apply because there is no degree of membership for age = old

Rule Composition

Using the output of the fuzzy rules, and looking at the

membership function

for Life_Insurance_Accept we get the following graph:

Defuzzification

- Could use the largest value (max, or 0.20 in this case)
- OR
- Could compute the center of gravity (essentially the centroid, or mean)

Fuzzy Development Model

Steps:

- 1. Specify the problem and define linguistic variables
- 2. Determine fuzzy sets and membership functions
- 3. Elicit and construct fuzzy rules
- 4. Encode fuzzy sets, rules, procedures
- 5. Evaluate and tune the system

Fuzzy Logic Gone Wrong...

FIRST VILLAGER: We have found a witch. May we burn her? ALL: A witch! Burn her! BEDEVERE: Why do you think she is a witch? SECOND VILLAGER: She turned me into a newt. BEDEVERE: A newt? SECOND VILLAGER (after looking at himself for some time): I got better. ALL: Burn her anyway. BEDEVERE: Quiet! Quiet! There are ways of telling whether she is a witch. BEDEVERE: Tell me . . . what do you do with witches? ALL: Burn them. BEDEVERE: And what do you burn, apart from witches? FOURTH VILLAGER: ... Wood? BEDEVERE: So why do witches burn? SECOND VILLAGER: (pianissimo) Because they're made of wood? BEDEVERE: Good. ALL: I see. Yes, of course. BEDEVERE: So how can we tell if she is made of wood? FIRST VILLAGER: Make a bridge out of her. BEDEVERE: Ah . . . but can you not also make bridges out of stone? ALL: Yes, of course. . . um . . . er . . . BEDEVERE: Does wood sink in water? ALL: No, no, it floats. Throw her in the pond. BEDEVERE: Wait. Wait... tell me, what also floats on water? ALL: Bread? No, no no. Apples... gravy. . . very small rocks. . . BEDEVERE: No, no no, KING ARTHUR: A duck! (They all turn and look at ARTHUR. BEDEVERE looks up very impressed.) BEDEVERE: Exactly. So . . . logically. . . FIRST VILLAGER (beginning to pick up the thread): If she. . . weighs the same as a duck... she's made of wood. **BEDEVERE:** And therefore? ALL: A witch!