Fuzzy Logic

Fuzzy Logic

- Aristotle: A or (xor) not(A)
- Buddha: A and not(A)
- Example: My height
- Ex-in-laws say I’m short
- My family says I'm tall
- Most people would say I'm on the short side of average

Fuzzy Logic

- Rather than a fact being either 1 or 0 , true or false, fuzzy logic allows partial values, represented by real numbers, to indicate the possibility of truth or falsity
- Degrees of membership rather than crisp membership

Fuzzy Sets

- Membership Functions
- Classical set theory is crisp
$x \in X$ OR x not $\in X$, but not both
- Called the principle of dichotomy
- Membership functions (fuzzy) or Characteristic functions (crisp)

Fuzzy Sets

- Linguistic Variables and Hedges
- A linguistic variable is a fuzzy variable

If age is young
And previous_accepts are several Then life_ins_accept is high

There are 3 linguistic variables here:
Age
Previous_accepts
Life_ins_accept

Fuzzy Sets

- Linguistic Variables and Hedges

- We saw a continuous membership function a minute ago
- Here is one way of defining a discrete membership function for age:

Age is young:
$\{(0 / 1.0),(5 / 0.95),(10 / 0.75),(15 / 0.50),(20 / 0.35),(30 / 0.10),(50 / 0.0)\}$
x / y : x is the value for age, y is the degree of set membership
Note: some books put this as $\mu_{A}(x) / x$, with the degree of membership first $\left(\mu_{A}(x)\right)$ and the attribute value second (x)

To find out if a person is young or not, given an age not listed, interpolate between the values

Fuzzy Sets

- Hedges:
- All purpose modifiers: very, quite, extremely
- Truth values: quite true, mostly false
- Probabilities: likely, not very likely

Roy's search and rescue rules - somewhat likely, etc.

- Quantifiers: most, several, few
- Possibilities: almost impossible, quite possible

Fuzzy Sets

- Fuzzy Set Operations
- Complement $-\mu_{\sim_{A}}(x)=1-\mu_{A}(x)$

- Containment - Elements of a subset vs. set will have lesser degrees ${ }^{\mu}$ of membership

- Intersection $-\mu_{A \cap B}(x)=\min \left[\mu_{A}(x), \mu_{B}(x)\right]$

- Union $-\mu_{\mathrm{AUB}}(x)=\max \left[\mu_{A}(x), \mu_{B}(x)\right]$

Fuzzy Rules

- Crisp Rule:
- If age < 30

And previous _accepts > = 3
Then life_ins_promo $=$ yes

- Fuzzy Rules:
- Rule 1: Accept is high

If age is young
And previous_accepts are several
Then life_ins_accept is high

- Rule 2: Accept is moderate If age is middle-aged And previous_accepts are some
Then life_ins_promo is moderate
- Rule 3: Accept is low

If age is old
Then life insurance accept is low

- May have multiple antecedent clauses, joined by ANDs and ORs
- May have multiple consequents - each one is affected equally by the antecedents

Fuzzy Inference

- The Process:
- 1. Fuzzification
- 2. Rule Inference
- 3. Rule Composition
- 4. Defuzzification

Fuzzy Inference

- Example:
- Let's say we have a person who is 33 years old and has 5 previous accepts.

Table 13.1. Life Insurance Promotion Data

		Previous	Life Insurance
Instance \#	Age	Accepts	Promotion
1	25	2	Yes
2	33	4	Yes
3	19	1	Yes
4	43	5	No
5	35	1	No
6	26	3	Yes
7	50	2	No
8	24	2	Yes
9	20	0	No
10	62	3	No
11	36	5	Yes
12	27	0	No
13	28	1	No
14	25	3	Yes

Fuzzification

- Define membership functions for all linguistic (fuzzy) variables:
- Age

- Previous_Accepts

1 0.9 0.8 Degree of 0.7 Membersip 0.6 0.5 0.4 030.2 0.1 0		Some		
2 Reavak_Accasta ${ }^{\text {a }}$				

Fuzzification

- Define membership functions for all linguistic (fuzzy) variables:
- Life_Insurance_Accepts

Rule Inference

- From our previous fuzzy rules... (Slide 9)
- age =

> middle-aged (0.25)
young (0.10)

- previous_accepts = some (0.20) several (0.60)
- Rule 1: age = young (0.10)

AND
prev_accepts $=$ some (0.25)

- These are ANDed, so use min:
0.10 degree of membership for life_ins = high
- Rule 2: age = middle-aged (0.25)

AND
prev_accepts = some (0.20)

- These are ANDed, so use min again:
0.20 degree of membership in life_ins = moderate
- Rule 3: doesn't apply because there is no degree of membership for age = old

Rule Composition

- Using the output of the fuzzy rules, and looking at the

membership function for
Life_Insurance_Accept we get the following graph:

Defuzzification

- Could use the largest value (max, or 0.20 in this case) OR
- Could compute the center of gravity (essentially the centroid, or mean)

Fuzzy Development Model

- Steps:
- 1. Specify the problem and define linguistic variables
- 2. Determine fuzzy sets and membership functions
- 3. Elicit and construct fuzzy rules
- 4. Encode fuzzy sets, rules, procedures
- 5. Evaluate and tune the system

Fuzzy Logic Gone Wrong...

FIRST VILLAGER: We have found a witch. May we burn her?

ALL: A witch! Burn her!

BEDEVERE: Why do you think she is a witch?
SECOND VILLAGER: She turned me into a newt.
BEDEVERE: A newt?
SECOND VILLAGER (after looking at himself for some time): I got better.
ALL: Burn her anyway.
BEDEVERE: Quiet! Quiet! There are ways of telling whether she is a witch.
BEDEVERE: Tell me . . . what do you do with witches?
ALL: Burn them.
BEDEVERE: And what do you burn, apart from witches?
FOURTH VILLAGER: ... Wood?
BEDEVERE: So why do witches burn?
SECOND VILLAGER: (pianissimo) Because they're made of wood?
BEDEVERE: Good.
ALL: I see. Yes, of course.
BEDEVERE: So how can we tell if she is made of wood?
FIRST VILLAGER: Make a bridge out of her.
BEDEVERE: Ah . . . but can you not also make bridges out of stone?
ALL: Yes, of course. . . um . . . er . . .
BEDEVERE: Does wood sink in water?
ALL: No, no, it floats. Throw her in the pond.
BEDEVERE: Wait. Wait... tell me, what also floats on water?
ALL: Bread? No, no no. Apples... gravy. . . very small rocks. .
BEDEVERE: No, no no,
KING ARTHUR: A duck!
(They all turn and look at ARTHUR. BEDEVERE looks up very impressed.) BEDEVERE: Exactly. So . . . logically.
FIRST VILLAGER (beginning to pick up the thread): If she. . . weighs the same as
a duck. . . she's made of wood
BEDEVERE: And therefore?
ALL: A witch!

