
CSCI 446:
Artificial Intelligence
Decision Trees

Trees

 “Divide-and-conquer” approach produces tree

 Nodes involve testing a particular attribute

 Usually, attribute value is compared to constant

 Other possibilities:

 Comparing values of two attributes

 Using a function of one or more attributes

 Leaves assign classification, set of classifications, or probability distribution
to instances

 Unknown instance is routed down the tree

2

Decision Tree

3

Nominal and Numeric Attributes

 Nominal:

 Number of children usually equal to number values

 Attribute won’t get tested more than once

 Other possibility: division into two subsets

 Numeric:

 Test whether value is greater or less than constant

 Attribute may get tested several times

 Other possibility: three-way split (or multi-way split)

 Integer: less than, equal to, greater than

 Real: below, within, above

4

Missing Values

 Does absence of value have some significance?

 Yes: “missing” is a separate value

 No: “missing” must be treated in a special way

Solution A: Assign instance to most popular branch

Solution B: Split instance into pieces

 Pieces receive weight according to fraction of training instances that go down each
branch

 Classifications from leave nodes are combined using the weights that have percolated
to them

5

Constructing Decision Trees

●Strategy: Top Down
 Recursive divide-and-conquer fashion

First: Select attribute for root node
 Create branch for each possible attribute value

Then: Split instances into subsets
 One for each branch extending from the node

Finally: Repeat recursively for each branch, using only
instances that reach the branch

●Stop if all instances have the same class or there are no
more attributes to split on

6

Weather Data with ID Code

7

N

M

L

K

J

I

H

G

F

E

D

C

B

A

ID code

No True High Mild Rainy

Yes False Normal Hot Overcas
t

Yes True High Mild Overcas
t

Yes True Normal Mild Sunny

Yes False Normal Mild Rainy

Yes False Normal Cool Sunny

No False High Mild Sunny

Yes True Normal Cool Overcas
t

No True Normal Cool Rainy

Yes False Normal Cool Rainy

Yes False High Mild Rainy

Yes False High Hot Overcas
t

No True High Hot Sunny

No False High Hot Sunny

Pla
y

Wind
y

Humidit
y

Temp. Outlook

Which Attribute to Select?

8

Which Attribute to Select?

9

Criterion for Attribute Selection

●Which is the best attribute?

Want to get the smallest tree

Heuristic: choose the attribute that produces the “purest”

nodes

●Popular impurity criterion: information gain

Information gain increases with the average purity of the

subsets

●Strategy: Choose attribute that gives greatest

information gain

10

Computing Information

●Measure information in bits

Given a probability distribution, the info required to predict an

event is the distribution’s entropy

Entropy gives the information required in bits (can involve

fractions of bits)

Because were dealing with bits, the log is calculated in

base 2

●Formula for computing the entropy:

11

entropy(𝑝1,𝑝2,. . . , 𝑝𝑛) = −𝑝1log𝑝1 − 𝑝2log𝑝2. . . −𝑝𝑛log𝑝𝑛

An Algebraic Aside…

 Logarithms:

 by = x

 y = log
b
x

 e.g. 24 = 16, 4 = log216

 To change to a different base:

 log
b
x = log

10
x / log

10
b

 e.g.

log
2
2 = log

10
2 / log

10
2 = 0.301 / 0.301 = 1

log
2
4 = log

10
4 / log

10
2 = 0.602 / 0.301 = 2

log
2
8 = log

10
8 / log

10
2 = 0.9031 / 0.301 = 3

12

Example: Attribute Outlook

●Outlook = Sunny :

●Outlook = Overcast :

●Outlook = Rainy :

●Expected information for attribute:

13

Note: this
is normally
undefined.

info(2,3) = entropy(2 5,3 5) = −2 5 log(2 5) − 3 5 log(3 5) = 0.971bits

info(4,0) = entropy(1,0) = −1log(1) − 0log(0) = 0bits

info(2,3) = entropy(3 5,2 5) = −3 5 log(3 5) − 2 5 log(2 5) = 0.971bits

info 3,2 , 4,0 , 3,2 = 5 14 × 0.971 + 4 14 × 0 + (5 14) × 0.971 = 0.693bits

Computing Information Gain

●Information gain: information before splitting – information after splitting

●Information gain for attributes from weather data:

14

gain(Outlook) = 0.247 bits

gain(Temperature) = 0.029 bits

gain(Humidity) = 0.152 bits

gain(Windy) = 0.048 bits

gain(Outlook) = info([9,5]) – info([2,3],[4,0],[3,2])

 = 0.940 – 0.693
 = 0.247 bits

Continuing to Split

gain(Temperature) = 0.571 bits

gain(Humidity) = 0.971 bits

gain(Windy) = 0.020 bits

15

Final Decision Tree

●Note: not all leaves need to be pure; sometimes identical instances have
different classes

 Splitting stops when data can’t be split any further

16

Wishlist for a Purity Measure

●Properties we require from a purity measure:
When node is pure, measure should be zero

When impurity is maximal (i.e. all classes equally likely),
measure should be maximal

Measure should obey multistage property (i.e. decisions can
be made in several stages):

●Entropy is the only function that satisfies all three
properties!

17

measure 2,3,4 = measure 2,7 + (7 9) × 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(3,4)

Highly-Branching Attributes

●Problematic - attributes with a large number of

values

●Subsets are more likely to be pure if there is a large

number of values

Information gain is biased towards choosing attributes with a

large number of values

This may result in overfitting (selection of an attribute that is

non-optimal for prediction)

18

Weather Data with ID Code

19

N

M

L

K

J

I

H

G

F

E

D

C

B

A

ID code

No True High Mild Rainy

Yes False Normal Hot Overcas
t

Yes True High Mild Overcas
t

Yes True Normal Mild Sunny

Yes False Normal Mild Rainy

Yes False Normal Cool Sunny

No False High Mild Sunny

Yes True Normal Cool Overcas
t

No True Normal Cool Rainy

Yes False Normal Cool Rainy

Yes False High Mild Rainy

Yes False High Hot Overcas
t

No True High Hot Sunny

No False High Hot Sunny

Pla
y

Wind
y

Humidit
y

Temp. Outlook

Tree Stump for ID Code Attribute

●Entropy of split:

Information gain is maximal for ID code (namely 0.940
bits)

20

info(ID code) = 𝑖𝑛𝑓𝑜 0,1 + 𝑖𝑛𝑓𝑜 0,1 + ⋯+ 𝑖𝑛𝑓𝑜(0,1) = 0𝑏𝑖𝑡𝑠

Gain Ratio

●Gain ratio: a modification of the information gain
that reduces its bias

●Gain ratio takes number and size of branches into
account when choosing an attribute

It corrects the information gain by taking the intrinsic
information of a split into account

●Intrinsic information:

●Entropy of distribution of instances into branches (i.e.
how much info do we need to tell which branch an
instance belongs to)

21

Computing the Gain Ratio

●Example: intrinsic information for ID code

●Value of attribute decreases as intrinsic information gets larger

●Definition of gain ratio:

𝑔𝑎𝑖𝑛_𝑟𝑎𝑡𝑖𝑜(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) =
𝑔𝑎𝑖𝑛(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)

𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐_𝑖𝑛𝑓𝑜(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)

●Example:

22

info(1,1, . . . , 1) = 14 × (−1 14 × log 1 14) = 3.807bits

gain_ratio(ID code) =
0.940bits

3.807bits
= 0.246

Gain Ratios for Weather Data

23

0.019 Gain ratio: 0.029/1.557 0.157 Gain ratio: 0.247/1.577

1.557 Split info: info([4,6,4]) 1.577 Split info: info([5,4,5])

0.029 Gain: 0.940-0.911 0.247 Gain: 0.940-0.693

0.911 Info: 0.693 Info:

Temperature Outlook

0.049 Gain ratio: 0.048/0.985 0.152 Gain ratio: 0.152/1

0.985 Split info: info([8,6]) 1.000 Split info: info([7,7])

0.048 Gain: 0.940-0.892 0.152 Gain: 0.940-0.788

0.892 Info: 0.788 Info:

Windy Humidity

More on the Gain Ratio

●Outlook still comes out top

●However ID code still has greater gain ratio
Standard fix: ad hoc test to prevent splitting on that type of
attribute

●Problem with gain ratio: it may overcompensate
May choose an attribute just because its intrinsic information
is very low

Standard fix: only consider attributes with greater than
average information gain

24

Walking Through the Weather Example…

1. Calculate the information value of the problem as a whole.

2. For each attribute:

 A. Calculate the information in each of its potential values.

 B. Calculate the average information value of that attribute.

 C. Calculate the gain by subtracting its value from the information
value of the problem as a whole.

3. Calculate the intrinsic information value of the split.

4. Calculate the ratio by dividing the attribute gain by the intrinsic information
value.

25

Walking Through the Example…

1. Calculate the information value of the problem as a whole.

info([9,5]) = entropy(9/14, 5/14)

= -9/14(log29/14) – 5/14(log25/14)

= -9/14((log109/14)/(log102)) – 5/14((log105/14)/(log102))

= 0.940 bits

26

Walking Through the Example…
2. For each attribute:

 A. Calculate the information in each of its potential values.

 Outlook = Sunny

 info([2,3]) = entropy(2/5, 3/5)

 = -2/5(log22/5) – 3/5(log23/5)

 = -2/5((log102/5)/(log102)) – 3/5((log103/5)/(log102))

 = 0.971 bits

 Outlook = Overcast

 info([4,0]) = entropy(4/4, 0/4) = entropy(1, 0)

 = -1(log21) – 0(log20)

 = -1((log101)/(log102)) – 0

 = 0 bits

 Outlook = Rainy

 info([2,3]) = entropy(2/5, 3/5)

 = -2/5(log22/5) – 3/5(log23/5)

 = -2/5((log102/5)/(log102)) – 3/5((log103/5)/(log102))

 = 0.971 bits

27

Walking Through the Example…

2. For each attribute:

 B. Calculate the average information value of that attribute.

 info([3,2], [4,0], [3,2])

 = 5/14 * 0.971 + 4/14 * 0 + 5/14 * 0.971

 = 0.693 bits

28

Walking Through the Example…

2. For each attribute:

 C. Calculate the gain by subtracting its value from the information
value of the problem as a whole.

 info([9,5]) - info([2,3],[4,0], [2,3])

 = 0.940 – 0.693

 = 0.247

29

Walking Through the Example…

3. Calculate the intrinsic information value of the split.

 info([5, 4, 5]) = entropy(5/14, 4/14, 5/14)
 = -5/14(log

2
5/14) – 4/14(log

2
4/14) – 5/14(log

2
5/14)

 = -5/14((log
10

5/14)/(log
10

2)) – 4/14((log
10

4/14)/(log
10

2)) -
5/14((log

10
5/14)/(log

10
2))

 = 1.577 bits

30

Walking Through the Example…

4. Calculate the ratio by dividing the attribute gain by the intrinsic information
value.

 Gain Ratio = Gain from Attribute / Intrinsic Value of Split

 = 0.247 / 1.577

 = 0.157

31

Walking Through the Example…

 Now you try the math for an attribute, (Temperature, Humidity, or Windy)
and see if your numbers come out the same as those listed on slide 19.

32

Numeric Attributes

●Standard method: binary splits
●E.g. temp < 45

●Unlike nominal attributes, every attribute has

many possible split points

●Solution is straightforward extension:
●Evaluate info gain (or other measure) for every possible split point

of attribute

●Choose “best” split point

●Info gain for best split point is info gain for attribute

●Computationally more demanding

33

Weather Data (Again!)

34

If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity = normal then play = yes

If none of the above then play = yes

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False High Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … … … … … … … No True Normal Cool Rainy

… … … … … … … … … … … … … … …

… … … … … … … … … … Yes False Normal Cool Rainy

Weather Data (Again!)

35

If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity = normal then play = yes

If none of the above then play = yes If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity < 85 then play = no

If none of the above then play = yes

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False High Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … … … … … … … No True Normal Cool Rainy

… … … … … … … … … … … … … … …

… … … … … … … … … … Yes False Normal Cool Rainy

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False 96 70 Rainy

Yes False 86 83 Overcast

No True 90 80 Sunny

No False 85 85 Sunny

Play Windy Humidity Temperature Outlook

… … … … … … … … … … No True 70 65 Rainy

… … … … … … … … … … … … … … …

… … … … … … … … … … Yes False 80 68 Rainy

Example

●Split on temperature attribute:

●E.g. temperature  71.5: yes/4, no/2

 temperature  71.5: yes/5, no/3

●Info([4,2],[5,3])

= 6/14 info([4,2]) + 8/14 info([5,3])

= 0.939 bits

●Place split points halfway between values

●Can evaluate all split points in one pass!
36

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

Can Avoid Repeated Sorting

●Sort instances by the values of the numeric

attribute
●Time complexity for sorting: O (n log n)

●Does this have to be repeated at each node

of the tree?

●No! Sort order for children can be derived

from sort order for parent
●Time complexity of derivation: O (n)

●Drawback: need to create and store an array of sorted

indices for each numeric attribute
37

Binary vs Multiway Splits

●Splitting (multi-way) on a nominal attribute

exhausts all information in that attribute
●Nominal attribute is tested (at most) once on any path in the tree

●Not so for binary splits on numeric attributes!
●Numeric attribute may be tested several times along a path in the

tree

●Disadvantage: tree is hard to read

●Remedy:
●Pre-discretize numeric attributes, or

●Use multi-way splits instead of binary ones

38

Missing Values

●Split instances with missing values into pieces
●A piece going down a branch receives a weight proportional to the

popularity of the branch

●Weights sum to 1

●Info gain works with fractional instances
●Use sums of weights instead of counts

●During classification, split the instance into pieces

in the same way
●Merge probability distribution using weights

39

Pruning

●Prevent overfitting to noise in the data

●“Prune” the decision tree

●Two strategies:
●Postpruning
Take a fully-grown decision tree and discard unreliable parts

●Prepruning
Stop growing a branch when information becomes unreliable

●Postpruning preferred in practice—
prepruning can “stop early”

40

Prepruning

●Based on statistical significance test
●Stop growing the tree when there is no statistically

significant association between any attribute and the class at

a particular node

●ID3 used chi-squared test in addition to

information gain
●Only statistically significant attributes were allowed to be

selected by information gain procedure

41

Early Stopping

●Pre-pruning may stop the growth process prematurely:

early stopping

●Classic example: XOR/Parity-problem

●No individual attribute exhibits any significant association to the

class

●Structure is only visible in fully expanded tree

●Prepruning won’t expand the root node

●But: XOR-type problems rare in practice

●And: prepruning faster than postpruning

42

0 0 0 1

1 1 0 2

1

1

a

0 1 4

1 0 3

class b

Postpruning

●First, build full tree

●Then, prune it
●Fully-grown tree shows all attribute interactions

●Two pruning operations:
●Subtree replacement

●Subtree raising

●Possible strategies:
●Error estimation

●Significance testing

●MDL principle

43

Subtree Replacement

●Bottom-up

●Consider replacing a tree only after considering all its

subtrees

44

Subtree Raising

●Delete node

●Redistribute instances

●Slower than subtree replacement

 (Worthwhile?)

45

Estimating Error Rates

●Prune only if it does not increase the estimated
error

●Error on the training data is NOT a useful
estimator (would result in almost no pruning)

●Use hold-out set for pruning (“reduced-error
pruning”)

●C4.5’s method
●Derive confidence interval from training data

●Use a heuristic limit, derived from this, for pruning

●Standard Bernoulli-process-based method

●Shaky statistical assumptions (based on training data)

46

Complexity of Tree Induction

●Assume
●m attributes

●n training instances

●tree depth O (log n)

●Building a tree O (m n log n)

●Subtree replacement O (n)

●Subtree raising O (n (log n)2)
●Every instance may have to be redistributed at every node

between its leaf and the root

●Cost for redistribution (on average): O (log n)

Total cost: O (m n log n) + O (n (log n)2)
47

Discussion

●The most extensively studied method of machine

learning

● Different criteria for attribute/test selection rarely

make a large difference

●Different pruning methods mainly change the size

of the resulting pruned tree

48

