INFERENCE IN
PROPOSITIONAL LOGIC

T TTCs ——
Hfanoh = ~ Bresre -7
4 e PIT
e
Wy e Zow
3 Eee N PiT Jke
Wb b
cs = ald W
T oees T prne
Eregze -
2 Sherch > - -
“Z Eresze < Brésze
1 T PIT £ T
START

Outline

- Inference rules and theorem proving
- Forward chaining
- Backward chaining
- Resolution

D
Proof Methods

- Proof methods divide into (roughly) two kinds:

- Application of inference rules
- Legitimate (sound) generation of new sentences from old

- Proof = a sequence of inference rule applications
- Can use inference rules as operators in a standard search algorithm

- Typically require translation of sentences into a normal form
- Model checking

- Truth table enumeration (always exponential in n)

- Heuristic search in model space (sound but incomplete)
- e.g., min-conflicts-like hill-climbing algorithms

L
Forward and Backward Chaining

- Horn Form (restricted)
- KB = conjunction of Horn clauses

- Horn clause =

- proposition symbol; or

- (conjunction of symbols) = symbol
-Eg,CA(B=>A)A(CAD)=B)

- Modus Ponens (for Horn Form): complete for Horn KBs
a1y, O, N Nay, = 3
3
- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

Forward Chaining

- Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found
-P=Q q
-LAM=P
-BAL=>M
-AAP=L
-AAB=L
M
- A
- B L

Forward Chaining
Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional Horn clauses
g, the query, a proposition symbol
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known in K'B

while agenda is not empty do
p— Popr(agenda)
unless inferred[p] do
inferred|p| — true
for each Horn clause ¢ in whose premise p appears do
decrement count|c]
if count|[c] = 0 then do
if HEAD[¢] = ¢ then return true
PuUsH(HEAD[¢], agenda)
return false

Forward Chaining
Example

Forward Chaining
Example

P=Q

LAM=P
BAL=>M
AANP=>L
AAB=L

Forward Chaining
Example

Forward Chaining
Example

Forward Chaining
Example

Forward Chaining
Example

Forward Chaining
Example

Forward Chaining
Example

Proof of Completeness

- Forward chaining (FC) derives every atomic sentence that
Is entailed by KB

- 1. FC reaches a fixed point where no new atomic
sentences are derived

- 2. Consider the final state as a model m, assigning
true/false to symbols

- 3. Every clause in the original KB is true in m
- Proof: Suppose a clause a; A ... Aa, = bisfalseinm
- Thena; A ... Ag is true in m and b is false in m
- Therefore the algorithm has not reached a fixed point!

- 4. Hence m is a model of KB
- 5. If KB E q, q is true in every model of KB, including m

L
Backward Chaining

- ldea: work backwards from the query q:

- To prove g by backward chaining,
- Check if q is known already, or

- Prove by backward chaining (BC) all premises of some rule concluding
q

- Avoid loops: check if new subgoal is already on the goal
stack

- Avoid repeated work: check if new subgoal
- 1) has already been proved true, or
- 2) has already failed

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Forward vs. Backward Chaining

- FC is data-driven, automatic, unconscious processing,
- e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
- e.g., Where are my keys? How do | get into a PhD program?

- Complexity of BC can be much less than linear in size of
KB

Resolution

- Conjunctive Normal Form (CNF - universal)
- Conjunction of disjunctions of literals ;. ., ., _p
- Disjunctions of literals means clauses
- E.g.,
Resolution inference rule (for CNF): complete for propositional logic
SRVARERVE S mi VoV omy,
(4N oo NNy VN V- Mij—1 VM1 V-V iy,

- where |; and m; are complementary literals.

E.g.,
_Pl__:} V PQ_.Q: —|P2?2 PP?\
L £
- Resolution is sound and complete for ﬁ“ -
propositional logic w | W

Conversion to
CNF

Bi1 & (PiaV Pyy)

1. Eliminate <, replacing @ < [with (o« =) A (7 = «).
(B11 = (Pi2V 1)) AN ((Pi2V 1) = Bia)

2. Eliminate =, replacing o« = 7 with —a \VV /7.
(=B11V PiaV Pag) AN (=(PiaV Pa1)V Byg)

3. Move — inwards using de Morgan's rules and double-negation:
(—B11V PiaV Pyy) AN ((wPiaN—=Pa1) V Byg)

4. Apply distributivity law (V' over /) and flatten:

(=B11V PiaV Pyy) AN (=P1aV Bia) AN (=FPy1 V Byg)

- Proof by contradiction, Resolufi
i.e., show KB A —a esolution

unsatisfiable Algorithm

function PL-RESOLUTION(KB, &) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
v, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB A -«
new— { }
loop do
for each C}, C'; in clauses do
resolvents— PL-RESOLVE(C}, C})
if resolvents contains the empty clause then return true
new+— new U resolvents
if new C clauses then return false
clauses +— clauses \J new

Resolution
Example

KB = (Bl,l —— (Pljg V PQJ)) N _'Bl,l o = _'PLQ

_‘P2,1V Bu ol B1,1V PI,ZV Pz,l _'Pl,lv Bl,l o Bl,l Pl,z

v R’ AN

|
51V Pl’zv Bl’l Pl,lv PE,I\/ _‘Pl,z bV Pz’lv Bl’l Pl,lv Pz,lv _'P2,1 _|P2,1 P,

Summary

- Logical agents apply inference to a knowledge base
- to derive new information and make decisions

- Basic concepts of logic:
- Syntax: formal structure of sentences
- Semantics: truth of sentences with respect to models
- Entailment: necessary truth of one sentence given another
- Inference: deriving sentences from other sentences
- Soundness: derivations produce only entailed sentences
- Completeness: derivations can produce all entailed sentences

- Wumpus world requires the ability to represent partial and
negated information, reason by cases, efc.

- Forward, backward chaining are linear-time, complete for Horn
clauses

- Resolution is complete for propositional logic
- Propositional logic lacks expressive power

