LOGICAL AGENTS

Outline

- Knowledge-based agents
- Wumpus world
- Logic in general models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability

Knowledge Bases

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - Tell it what it needs to know
- Then it can Ask itself what to do answers should follow from the KB
- Agents can be viewed at the knowledge level
 - i.e., what they know, regardless of how implemented
- Or at the implementation level
 - i.e., data structures in KB and algorithms that manipulate them

- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

A simple Knowledge-Based Agent

Wumpus World PEAS Description

- Performance measure
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow
- Environment
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter if gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
- Actuators Left turn, Right turn,
 - Forward, Grab, Release, Shoot
- Sensors
 - Breeze, Glitter, Smell

1

2

2

3

4

Wumpus World Characterization

- Observable??
 - No only local perception
- Deterministic??
 - Yes outcomes exactly specified
- Episodic??
 - No sequential at the level of actions
- Static??
 - Yes Wumpus and Pits do not move
- Discrete??
 - Yes
- Single-agent??
 - Yes Wumpus is essentially a natural feature

OK ΟK OK Α

ΟK В OK OK Α

P? OK В OK OK A

OK `P? В Voк s OK

В OK ok s OK

В OK ok s OK

OK **P**? OK В OK ΟK S OK

Other Tight Spots

- Breeze in (1,2) and (2,1)
 - => no safe actions
- Assuming pits uniformly distributed,
- (2,2) has pit w/ prob 0.86, vs. 0.31

- Smell in (1,1)
 - => cannot move
- Can use a strategy of coercion:
 - Shoot straight ahead
 - Wumpus was there => dead => safe
 - Wumpus wasn't there => safe

Logic in General

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
 - i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
 - $x + 2 \ge y$ is a sentence; $x^2 + y \ge is$ not a sentence
 - x + 2 >= y is true iff the number x + 2 is no less than the number y
 - $x + 2 \ge y$ is true in a world where x=7, y = 1
 - $x + 2 \ge y$ is false in a world where x=0, y=6

Entailment

Entailment means that one thing follows from another:

$$KB \models \alpha$$

- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
- E.g., x + y = 4 entails 4 = x + y
- Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- M(α) is the set of all models of α
- Then

$$KB \models \alpha$$

if and only if

$$M(KB) \subseteq M(\alpha)$$

- E.g. KB = Giants won and Reds won
- α = Giants won

Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for ?s
- assuming only pits, 3 Boolean choices => 8 possible models

Wumpus Models

Wumpus Models

KB = wumpus-world rules + observations

 KB = wumpus-world rules + observations

Wumpus Models

• $\alpha 1 = \text{``[1,2]}$ is safe", KB |= $\alpha 1$, proved by model checking

Wumpus Models

KB = wumpus-world rules + observations

 KB = wumpus-world rules + observations

Wumpus models

• $\alpha 2 = \text{``[2,2]} \text{ is safe''}, KB | \neq \alpha 2$

Inference

$$KB \vdash_i \alpha$$

- means sentence α can be derived from KB by procedure i
- Consequences of KB are a haystack; α is a needle.
- Entailment = needle in haystack; inference = finding it
- Soundness: i is sound if
 - whenever $KB \vdash_i \alpha$
 - it is also true that $KB \models \alpha$
- · Completeness: i is complete if
 - whenever $KB \models \alpha$
 - it is also true that $KB \vdash_i \alpha$
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the KB.

Propositional Logic: Syntax

- Propositional logic is the simplest logic illustrates basic ideas
- The proposition symbols P₁, P₂ etc. are sentences
- If S is a sentence, ¬S is a sentence (negation)
- If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)
- If S1 and S2 are sentences, S1 v S2 is a sentence (disjunction)
- If S1 and S2 are sentences, S1⇒S2 is a sentence (implication)
- If S1 and S2 are sentences, S1

 S2 is a sentence (biconditional)

Propositional Logic: Semantics

- Each model species true/false for each proposition symbol
- E.g. $P_{1,2}$ $P_{2,2}$ $P_{3,1}$ true true false
- (With these symbols, 8 possible models, can be enumerated automatically.)
- Rules for evaluating truth with respect to a model m:

```
\neg S
 is true iff S is false S_1 \wedge S_2 is true iff S_1 is true S_1 \vee S_2 is true iff S_1 is true S_1 \vee S_2 is true iff S_1 is true S_1 \Rightarrow S_2 is true iff S_1 is false S_2 is true iff S_1 is false S_2 is true iff S_2 is true S_3 \Rightarrow S_4 is true S_4 \Rightarrow S_5 is true iff S_4 \Rightarrow S_5 is true S_5 \Rightarrow S_6 is true S_7 \Rightarrow S_7 \Rightarrow S_8 is true S_7 \Rightarrow S_8 \Rightarrow S_8 \Rightarrow S_8 is true
```

P_{1,2} ∧ (¬P_{2,2} V ¬P_{3,1}) = true ∧ (false V true)=true ∧ true=true
 Simple recursive process evaluates an arbitrary sentence

Truth Tables for Connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus World Sentences

- Let P_{i,j} be true if there is a pit in [i, j].
- Let B_{i,j} be true if there is a breeze in [i, j].
 - ¬ P_{1,1}
 - ¬ B_{1,1}
 - B_{2,1}
- "Pits cause breezes in adjacent squares"
 - $\bullet \; \mathsf{B}_{1,1} \Longleftrightarrow (\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1})$
 - $\bullet \ \mathsf{B}_{2,1} \Longleftrightarrow (\mathsf{P}_{1,1} \ \mathsf{V} \ \mathsf{P}_{2,2} \ \mathsf{V} \ \mathsf{P}_{3,1})$
- "A square is breezy if and only if there is an adjacent pit"

Enumerate rows
 (different assignments to symbols), if KB is true in row, check that α is too

Truth Tables for Inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	false	false				false	true	true	true	true	false	false
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	\underline{true}
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

- Depth-first enumeration of all models is sound and complete
- O(2ⁿ) for n symbols; problem is co-NP-complete

Inference by Enumeration

```
function TT-Entails? (KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
   symbols \leftarrow a list of the proposition symbols in KB and \alpha
   return TT-CHECK-ALL(KB, \alpha, symbols, [])
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
   if EMPTY?(symbols) then
       if PL-True?(KB, model) then return PL-True?(\alpha, model)
       else return true
   else do
       P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
       return TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, true, model)) and
                  TT-CHECK-ALL(KB, \alpha, rest, Extend(P, false, model))
```

 Two sentences are logically equivalent if true in same models:

· if and only if

$$\alpha \models \beta$$

and

$$\beta \models \alpha$$

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}$$

Validity and Satisfiability

- A sentence is valid if it is true in all models,
 - e.g., True, AV $\neg A$, A \Rightarrow A, (A \land (A \Rightarrow B)) \Rightarrow B
- Validity is connected to inference via the Deduction Theorem:
 - KB $\models \alpha$ if and only if (KB $\Rightarrow \alpha$) is valid
- A sentence is satisfiable if it is true in some model
 - e.g., A V B, C
- A sentence is unsatisfiable if it is true in no models
 - e.g., A ∧ ¬A
- Satisfiability is connected to inference via the following:
 - KB $\models \alpha$ if and only if (KB $\land \neg \alpha$) is unsatisfiable
- i.e., prove by reductio ad absurdum