Informed Search

Today

- Informed Search
- Heuristics
- Greedy Search
- A* Search
- Graph Search

Recap: Search

- Search problem:
- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test
- Search tree:
- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

- Search algorithm:
- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

Recap: Uniform Cost Search

Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
- Explores options in every "direction"
- No information about goal location

Uniform Cost Search (UCS): Pathing in an empty world

Notice: UCS explores in all directions

Uniform Cost Search (UCS): Pathing in Pac-Man world

Color indicates when state was expanded during search.
Red $=$ first
black = never

SCORE: 0

Informed Search

Search Heuristics

- A heuristic is:

- A function that estimates how close a state is to a goal
- Maps a state to a number
- Designed for a particular search problem
- Example: Manhattan distance for pathing
- Example: Euclidean distance for pathing

Example: Heuristic Function

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Greedy Search

- Expand the node that seems closest...

Arad

Sibiu

$\frac{\text { Sibiu }}{253}>\frac{\text { Bucharest }}{0}$

- What can go wrong?
- You can get a path that is not optimal

Straight-line distance
to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi
Lugoj
Mehadia
Neamt
Oradea
itesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
- Heuristic: estimate of distance to nearest goal for each state

- A common case:
- Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS

What search

 strategy is this?
Breadth-First Search (BFS)
 -or-
 Uniform Cost
 Search (UCS)

Note: since all costs 1, behaves the same as BFS

What search strategy is this?

Depth-First Search (DFS)

What search strategy is this?

Greedy search

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

- A* Search orders by the sum: $f(n)=g(n)+h(n)$

When should A* terminate?

- Should we stop when we enqueue a goal?

- No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:

$$
0 \leq h(n) \leq h^{*}(n)
$$

where $h^{*}(n)$ is the true cost to a nearest goal

- Examples:

- Coming up with admissible heuristics is most of what's involved in using A^{*} in practice.

Properties of A*

Uniform-Cost
A*

UCS vs A* Contours

- Uniform-cost expands equally in all "directions"

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

What search
 strategy is this?

A* search

What search

 strategy is this?
Breadth-First Search (BFS)
 -or-
 Uniform Cost
 Search (UCS)

Note: since all costs 1, behaves the same as BFS

What search strategy is this?

Greedy search

SCORE: 0

What search

 strategy is this?Uniform Cost
Search (UCS)

SCORE: 0

What search strategy is this?

A* search

SCORE: 0

Comparison

Greedy
Uniform Cost
A*

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

Creating Heuristics

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

- Inadmissible heuristics are often useful too

Example: 8 Puzzle

Start State

- What are the states?

Goal State

- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $\mathrm{h}($ start $)=8$
- This is a relaxed-problem heuristic

Start State

Goal State

	Average nodes expanded Uhen the optimal path has...		
UCS	112	6,300	3.6×10^{6}
TILES	13	39	227

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance

Start State

Goal State

- Why is it admissible?
- $\mathrm{h}($ start $)=3+1+2+\ldots=18$

	Average nodes expanded when the optimal path has...		
	. .4 steps	$\ldots .8$ steps	$\ldots .12$ steps
TILES	13	39	227
MANHATTAN	12	25	73

8 Puzzle III

- How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

- Dominance: $h_{a} \geq h_{c}$ if

$$
\forall n: h_{a}(n) \geq h_{c}(n)
$$

- Heuristics form a semi-lattice:
- Max of admissible heuristics is admissible

$$
h(n)=\max \left(h_{a}(n), h_{b}(n)\right)
$$

- Trivial heuristics
- Bottom of lattice is the zero heuristic (what does this give us?)
- Top of lattice is the exact heuristic

Graph Search

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work.

Graph Search

- In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
- Tree search + set of expanded states ("closed set")
- Expand the search tree node-by-node, but...
- Before expanding a node, check to make sure its state has never been expanded before
- If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

Consistency of Heuristics

- Main idea: estimated heuristic costs \leq actual costs

- Admissibility: heuristic cost \leq actual cost to goal

$$
h(A) \leq \text { actual cost from } A \text { to } G
$$

- Consistency: heuristic "arc" cost \leq actual cost for each arc

$$
h(A)-h(C) \leq \operatorname{cost}(A \text { to } C)
$$

- Consequences of consistency:
- The f value along a path never decreases

$$
h(A) \leq \operatorname{cost}(A \text { to } C)+h(C)
$$

- A* graph search is optimal

Optimality

- Tree search:
- A* is optimal if heuristic is admissible
- UCS is a special case ($h=0$)
- Graph search:
- A* optimal if heuristic is consistent
- UCS optimal ($\mathrm{h}=0$ is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from
 relaxed problems

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

```
function Tree-SEARCH(problem, fringe) return a solution, or failure
    fringe \leftarrow LINSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
    if fringe is empty then return failure
    node }\leftarrow\mathrm{ REMOVE-FRONT(fringe)
    if GOAL-TEST(problem, STATE[node]) then return node
    for child-node in EXPAND(STATE[node], problem) do
        fringe }\leftarrow\operatorname{INSERT}(\mathrm{ child-node, fringe)
        end
    end
```


Graph Search Pseudo-Code

```
function Graph-SEARCH(problem, fringe) return a solution, or failure
    closed }\leftarrow\mathrm{ an empty set
    fringe }\leftarrow\operatorname{InSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node }\leftarrow\mathrm{ REMOVE-FRONT(fringe)
        if GOAL-TEST(problem, STATE[node]) then return node
        if STATE[node] is not in closed then
            add STATE[node] to closed
            for child-node in EXPAND(STATE[node], problem) do
            fringe }\leftarrow\operatorname{INSERT(child-node, fringe)
            end
    end
```

