Informed Search

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

" Informed Search
= Heuristics
" Greedy Search
= A* Search

" Graph Search

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
» Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

\ r \
Action: flip top two A{ Path to reach goal:
Cost: 2 Flip four, flip three

/ l Total cost: 7
>

Recap: Uniform Cost Search

Uniform Cost Search

= Strategy: expand lowest path cost

" The good: UCS is complete and optimall!

= The bad:

= Explores options in every “direction”
= No information about goal location

Uniform Cost
Search (UCS):
Pathing in an
empty world

Notice: UCS
explores in all
directions

Search Strategies Demo

Uniform Cost
Search (UCS):
Pathing in Pac-Man
world

Color indicates when
state was expanded
during search.

Red = first
black = never

SCORE: 0

Informed Search

Search Heuristics

= A heuristic is:

A function that estimates how close a state is to a goal
Maps a state to a number

Designed for a particular search problem

Example: Manhattan distance for pathing

Example: Euclidean distance for pathing

=

S ——

 —

Heuriski - Tron

< ---f l

>

e

|

Heurlsti - Tron

A

Example: Heuristic Function

] Vaslui

Timisoara

142
11

Pitesti

98

] Hirsova

86

] Mehadia Urziceni

75

Dobreta []

=l Craiova Eforie

[] Giurgiu

ﬁtra ight—line distance \

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

J

h(X)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Greedy Search

= Expand the node that seems closest...

] Mehadia

Arad

Dobreta [

329

Fapare> Coaend uried
366

253 0

= What can go wrong?
* You can get a path that is not optimal

Eforie

] Giurgiu

Gtra ight-line distance \

to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

J

h(x)

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

What search
strategy is this?

Breadth-First
Search (BFS)

Or

Uniform Cost
Search (UCS)

Note: since all costs 1,
behaves the same as
BFS

Search Strategies Demo

Search Strategies Demo

What search
strategy is this?

Depth-First Search
(DFS)

Search Strategies Demo

What search
strategy is this?

Greedy search

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)
Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

h=1

= No: only stop when we dequeue a goal

Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= We need estimates to be less than actual costs!

Admissible Heuristics

Heuri s!' ~Tron

ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs

Admissible Heuristics
= A heuristic h is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

Search Strategies Demo

What search
strategy is this?

A* search

What search
strategy is this?

Breadth-First
Search (BFS)

Or

Uniform Cost
Search (UCS)

Note: since all costs 1,
behaves the same as
BFS

Search Strategies Demo

What search
strategy is this?

Greedy search

What search
strategy is this?

Uniform Cost
Search (UCS)

SCORE: 0

What search
strategy is this?

A* search

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

= Video games

A* Applications

Pathing / routing problems
Resource planning problems
Robot motion planning

_anguage analysis
Machine translation
Speech recognition

Creating Heuristics

YOuUu GOT

HEURISTIL
UFGRADE!

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too

Example: 8 Puzzle

7 2 4 7)1
s 6 N2/%[5
8 3 1 i8N 6

Start State Actions

3
2

1@“

7.

-

————

What are the states?

How many states?

What are the actions?

How many successors from the start state?
What should the costs be?

!

3
&

p)
|5
7 |®

Goal State

8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore

8 Puzzle Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

Total Manhattan distance

Start State

Why is it admissible?

h(start)= 3+1+2+..=18

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73

8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What's wrong with it? ? /t

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

= Dominance: h, > h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

max(hg, hy)

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \

f ' AN

___ i /) ~ \
B ‘___-_:'.Z":‘.‘.':_’:_-_ ,/ S

N\ 4 \ x‘f
Y/ \ C . C . & . C .

1) 1] A
] |}) 1) " . \
i 1 i i i \ i \
! \ i \ i \ J \
| \] \ [} \ [\
¥ \ J \ i \] \
/ \. l | | I | | Il/

R
S

/
<

Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

d e p

N |

b/m h r q
| /\@ |

r f

- ®O L

f q c G
N |
G a

C
I
a

Graph Search

ldea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

S (0+2)

~—

A (1+4) B(1+1)

! !

C (2+1) C (3+1)

} !

G (5+0) G (6+0)

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost fromAto G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality

Tree search:
= A* s optimal if heuristic is admissible
= UCS s a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe <= INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe < INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed +— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

