Informed Search

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Today

" Informed Search
= Heuristics
" Greedy Search
= A* Search

" Graph Search




Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
» Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans



Example: Pancake Problem

Cost: Number of pancakes flipped



Example: Pancake Problem

State space graph with costs as weights




General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

\ r \
Action: flip top two A{  Path to reach goal:
Cost: 2 Flip four, flip three

/ l Total cost: 7
>




Recap: Uniform Cost Search




Uniform Cost Search

= Strategy: expand lowest path cost

" The good: UCS is complete and optimall!

= The bad:

= Explores options in every “direction”
= No information about goal location




Uniform Cost
Search (UCS):
Pathing in an
empty world

Notice: UCS
explores in all
directions

Search Strategies Demo




Uniform Cost
Search (UCS):
Pathing in Pac-Man
world

Color indicates when
state was expanded
during search.

Red = first
black = never

SCORE: 0



Informed Search




Search Heuristics

= A heuristic is:

A function that estimates how close a state is to a goal
Maps a state to a number

Designed for a particular search problem

Example: Manhattan distance for pathing

Example: Euclidean distance for pathing
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Example: Heuristic Function
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Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place




Greedy Search




Greedy Search

= Expand the node that seems closest...
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= What can go wrong?
* You can get a path that is not optimal
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Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS




What search
strategy is this?

Breadth-First
Search (BFS)

_Or_

Uniform Cost
Search (UCS)

Note: since all costs 1,
behaves the same as
BFS

Search Strategies Demo




Search Strategies Demo

What search
strategy is this?

Depth-First Search
(DFS)




Search Strategies Demo

What search
strategy is this?

Greedy search




A* Search




Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)
Example: Teg Grenager



When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

h=1

= No: only stop when we dequeue a goal



Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= We need estimates to be less than actual costs!




Admissible Heuristics

Heuri s!' ~Tron



ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs



Admissible Heuristics
= A heuristic h is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.




Properties of A*

Uniform-Cost

A*




UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal



Search Strategies Demo

What search
strategy is this?

A* search




What search
strategy is this?

Breadth-First
Search (BFS)

_Or_

Uniform Cost
Search (UCS)

Note: since all costs 1,
behaves the same as
BFS

Search Strategies Demo




What search
strategy is this?

Greedy search




What search
strategy is this?

Uniform Cost
Search (UCS)

SCORE: 0



What search
strategy is this?

A* search




Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*



= Video games

A* Applications

Pathing / routing problems
Resource planning problems
Robot motion planning

_anguage analysis
Machine translation
Speech recognition




Creating Heuristics

YOuUu GOT

HEURISTIL
UFGRADE!




Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too



Example: 8 Puzzle
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What are the states?

How many states?

What are the actions?

How many successors from the start state?
What should the costs be?
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8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore



8 Puzzle Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

Total Manhattan distance

Start State

Why is it admissible?

h(start)= 3+1+2+..=18

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73




8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What's wrong with it? ? /t

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself



Trivial Heuristics, Dominance

= Dominance: h, > h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

max(hg, hy)



Graph Search




Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.
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Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search

ldea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?



A* Graph Search Gone Wrong?

State space graph

Search tree

S (0+2)
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A (1+4) B(1+1)
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G (5+0) G (6+0)



Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost fromAto G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal



Optimality

Tree search:
= A* s optimal if heuristic is admissible
= UCS s a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems




A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems




Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe <= INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT( fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe < INSERT(child-node, fringe)

end

end




Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed +— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe <— INSERT( child-node, fringe)
end
end




