Converting sentences from original problem to first order logic:

 $\begin{array}{l} \forall x, \mbox{kitten}(x) \land \mbox{lovesFish}(x) \Longrightarrow \mbox{teachable}(x) \\ \forall x, \mbox{kitten}(x) \land \neg \mbox{tail}(x) \Longrightarrow \neg \mbox{playsWithGorilla}(x) \\ \forall x, \mbox{kitten}(x) \land \mbox{whiskers}(x) \Longrightarrow \mbox{lovesFish}(x) \\ \forall x, \mbox{kitten}(x) \land \mbox{teachable}(x) \Rightarrow \neg \mbox{greenEyes}(x) \\ \forall x, \mbox{kitten}(x) \land \mbox{whiskers}(x) \Rightarrow \mbox{tail}(x) \end{array}$

Contrapositive from above:

 $\begin{array}{l} \forall x, \neg \text{teachable}(x) \Rightarrow \neg(\text{kitten}(x) \land \text{lovesFish}(x)) \\ \forall x, \text{playsWithGorilla}(x) \Rightarrow \neg(\text{kitten}(x) \land \neg \text{tail}(x)) \\ \forall x, \neg \text{lovesFish}(x) \Rightarrow \neg(\text{kitten}(x) \land \text{whiskers}(x)) \\ \forall x, \text{greenEyes}(x) \Rightarrow \neg(\text{kitten}(x) \land \text{teachable}(x)) \\ \forall x, \neg \text{tail}(x) \Rightarrow \neg(\text{kitten}(x) \land \text{whiskers}(x)) \end{array}$

Using DeMorgan's on the consequents of the above implications:

 $\begin{array}{l} \forall x, \neg \text{teachable}(x) \Rightarrow \neg \text{kitten}(x) \lor \neg \text{lovesFish}(x) \\ \forall x, \text{playsWithGorilla}(x) \Rightarrow \neg \text{kitten}(x) \lor \text{tail}(x) \\ \forall x, \neg \text{lovesFish}(x) \Rightarrow \neg \text{kitten}(x) \lor \neg \text{whiskers}(x) \\ \forall x, \text{greenEyes}(x) \Rightarrow \neg \text{kitten}(x) \lor \neg \text{teachable}(x)) \\ \forall x, \neg \text{tail}(x) \Rightarrow \neg \text{kitten}(x) \lor \neg \text{whiskers}(x) \end{array}$

All of these are already in Horn form, so we can do forward and backward chaining. Rewriting the reduced and valid rules and numbering them, so we can refer to them easily, the list becomes:

1. $\forall x$, kitten(x) \land lovesFish(x) \Rightarrow teachable(x) 2. $\forall x$, kitten(x) $\land \neg$ tail(x) $\Rightarrow \neg$ playsWithGorilla(x) 3. $\forall x$, kitten(x) \land whiskers(x) \Rightarrow lovesFish(x) 4. $\forall x$, kitten(x) \land teachable(x) $\Rightarrow \neg$ greenEyes(x) 5. $\forall x$, kitten(x) \land whiskers(x) \Rightarrow tail(x) 6. $\forall x$, \neg teachable(x) $\Rightarrow \neg$ kitten(x) $\lor \neg$ lovesFish(x) 7. $\forall x$, playsWithGorilla(x) $\Rightarrow \neg$ kitten(x) $\lor \neg$ tail(x) 8. $\forall x$, \neg lovesFish(x) $\Rightarrow \neg$ kitten(x) $\lor \neg$ whiskers(x) 9. $\forall x$, greenEyes(x) $\Rightarrow \neg$ kitten(x) $\lor \neg$ whiskers(x)) 10. $\forall x$, \neg tail(x) $\Rightarrow \neg$ kitten(x) $\lor \neg$ whiskers(x))

Given:

 $\exists x, kitten(x) \land greenEyes(x) \land \neg lovesFish(x)$

Forward Chaining:

Facts: 11. kitten(x) 12. greenEyes(x) 13. ¬lovesFish(x)

Scanning the list of rules from top to bottom, the first rule antecedent (left hand side of the implication) that matches any facts is rule 8. From that we can conclude \neg whiskers(x) because the consequent says \neg kitten(x) or \neg whiskers(x), and we know that \neg kitten(x) is false. So we add \neg whiskers(x) to the fact base:

14. ¬whiskers(x)

Scanning again, Rule 9 matches. Can conclude -teachable(x):

15. \neg teachable(x)

And we've proved it.

Backward Chaining:

Facts:

kitten(x)
 greenEyes(x)
 ¬lovesFish(x)

Since we are trying to prove \neg teachable(x), we look for rules that have that in the consequent (right hand side of the implication). Rule 9 does this. We look at the antecedent(s) to see what we need to prove next. The antecedent says greenEyes(x). This is given, so \neg teachable(x) is proved.

Resolution:

To do resolution, we need to convert this to conjunctive normal form (CNF). Rules 1 through 5 become the statements:

- 1. \neg (kitten(x) \land lovesFish(x)) \lor teachable(x)
- 2. \neg (kitten(x) $\land \neg$ tail(x)) $\lor \neg$ playsWithGorilla(x)
- 3. \neg (kitten(x) \land whiskers(x)) \lor lovesFish(x)
- 4. \neg (kitten(x) \land teachable(x)) $\lor \neg$ greenEyes(x)
- 5. \neg (kitten(x) \land whiskers(x)) \lor tail(x)

Oddly (or perhaps not so oddly, since this is logic, after all), the translation of the rules from the problem and their contrapositives results in the same set of statements. The statements above still need to be flattened into conjunctive form, so by using DeMorgan's, they become:

```
1. \negkitten(x) \lor \neglovesFish(x) \lor teachable(x)
2. \negkitten(x) \lor tail(x) \lor \negplaysWithGorilla(x)
```

```
3. \negkitten(x) \lor \negwhiskers(x) \lor lovesFish(x)
```

```
4. \negkitten(x) \lor \neg teachable(x) \lor \neggreenEyes(x)
```

5. \neg kitten(x) $\lor \neg$ whiskers(x) \lor tail(x)

We are still given:

- 6. kitten(x) 7. greenEyes(x)
- 8. ¬lovesFish(x)

And want to prove:

¬teachable(x)

So with proof by contradiction, we add the opposite, teachable(x), to the knowledge base:

9. teachable(x)

The resolution process:

We are told kitten(x), so we can resolve that with all of the clauses, 1 through 5, and we get:

¬lovesFish(x) ∨ teachable(x)
 tail(x) ∨ ¬playsWithGorilla(x)
 ¬whiskers(x) ∨ lovesFish(x)
 ¬ teachable(x) ∨ ¬greenEyes(x)
 ¬whiskers(x) ∨ tail(x)
 kitten(x)
 greenEyes(x)
 ¬lovesFish(x)
 teachable(x)

Resolve clause 7, greenEyes(x), with clause 4, and that results in:

10. \neg teachable(x)

Resolve 10 with 9, and we get the empty set. Therefore, the proof by contradiction holds, and \neg teachable(x) has been proven by resolution.

NOTE:

To be really correct, I should have substituted a constant in for x in kitten(x), say, Scruffy. Then all of the above would have used the (Skolem) constant as a substitution for x. Or I can just pretend my kitten is named "x". In this example it doesn't matter because all variables relate to the same object, the kitten. But in other problems, it could make a difference.