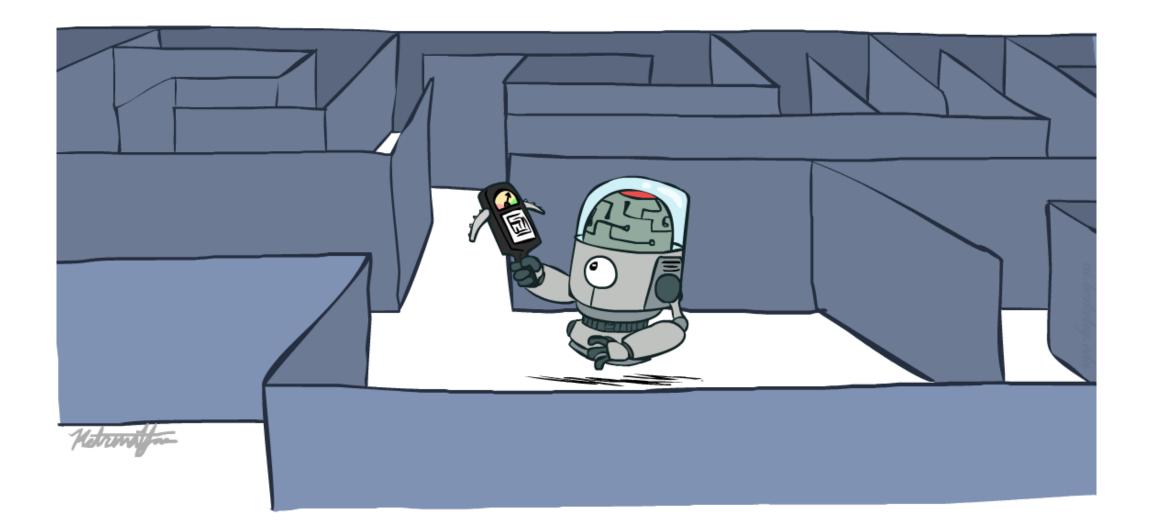
Informed Search



[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search

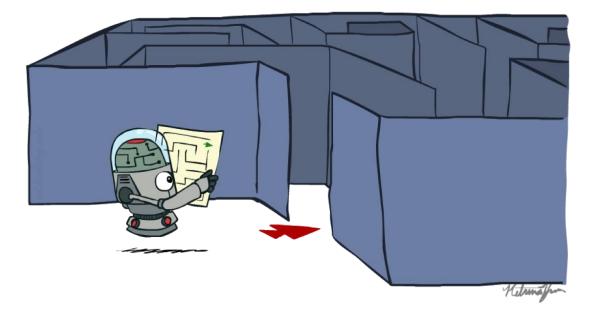
Graph Search

Recap: Search

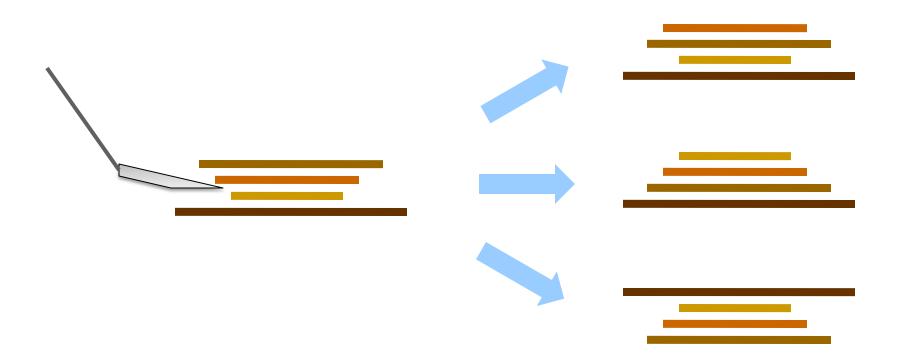
- Search problem:
 - States (configurations of the world)
 - Actions and costs
 - Successor function (world dynamics)
 - Start state and goal test

Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)
- Search algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds least-cost plans



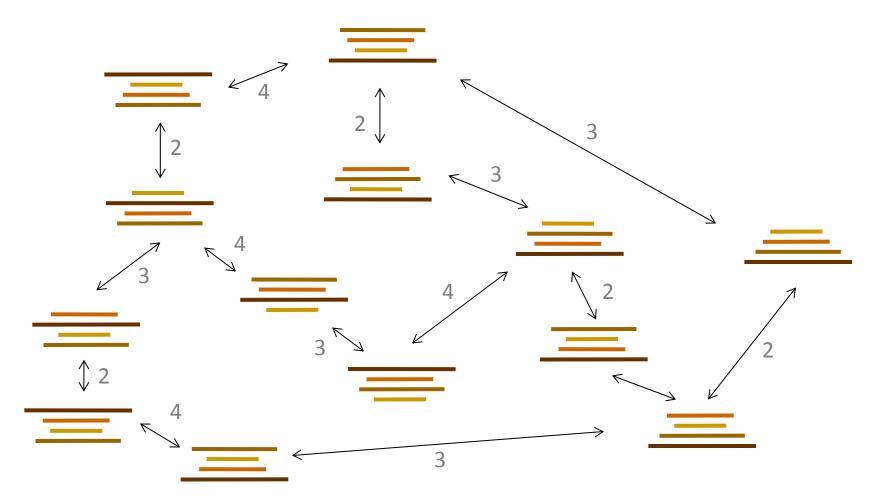
Example: Pancake Problem



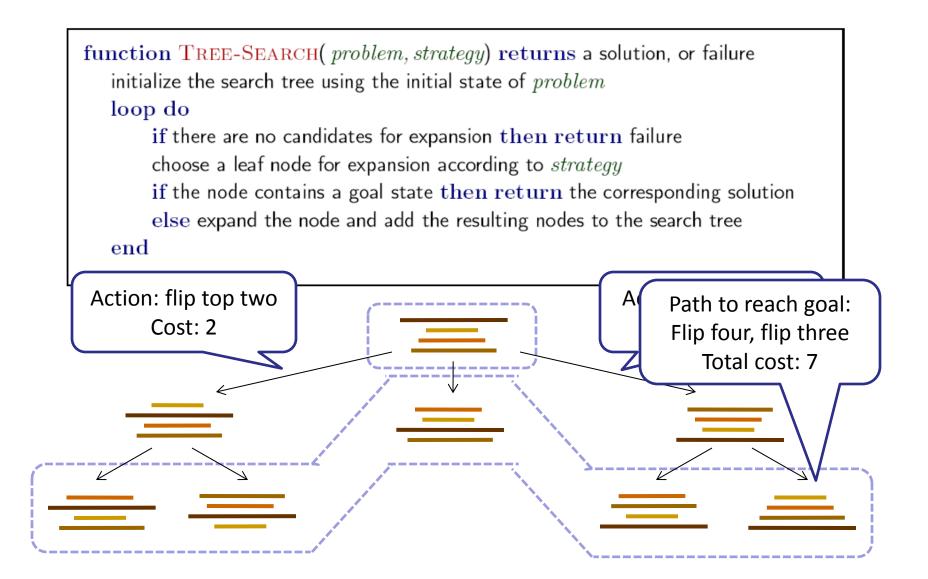
Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph with costs as weights



General Tree Search



Recap: Uniform Cost Search

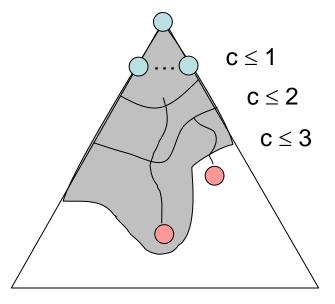


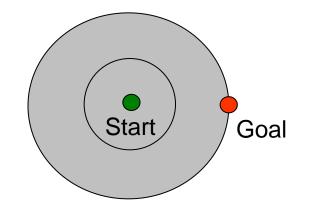
Uniform Cost Search

Strategy: expand lowest path cost

• The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location



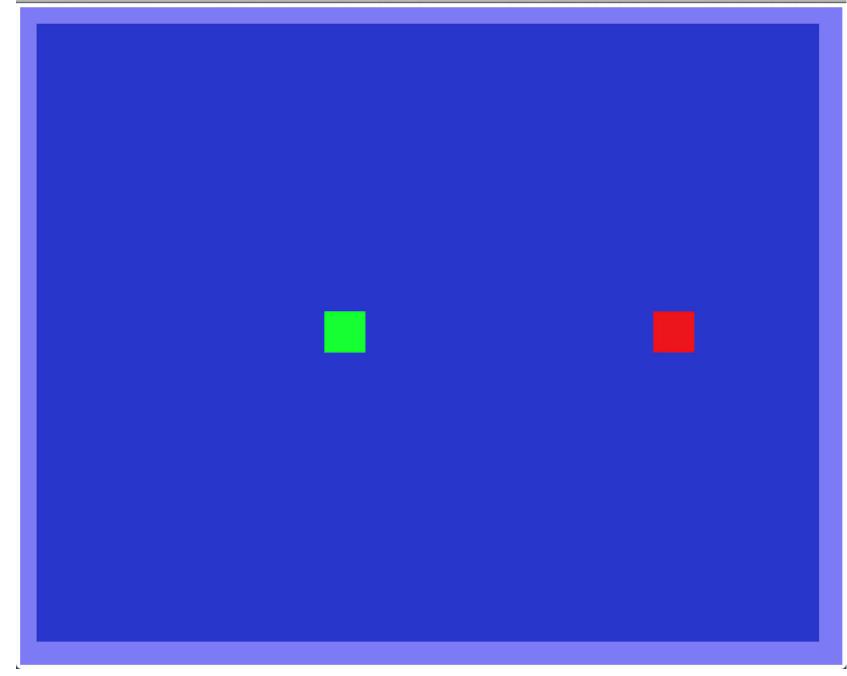


 $\bigcirc \bigcirc \bigcirc$

Search Strategies Demo

Uniform Cost Search (UCS): Pathing in an empty world

Notice: UCS explores in all directions

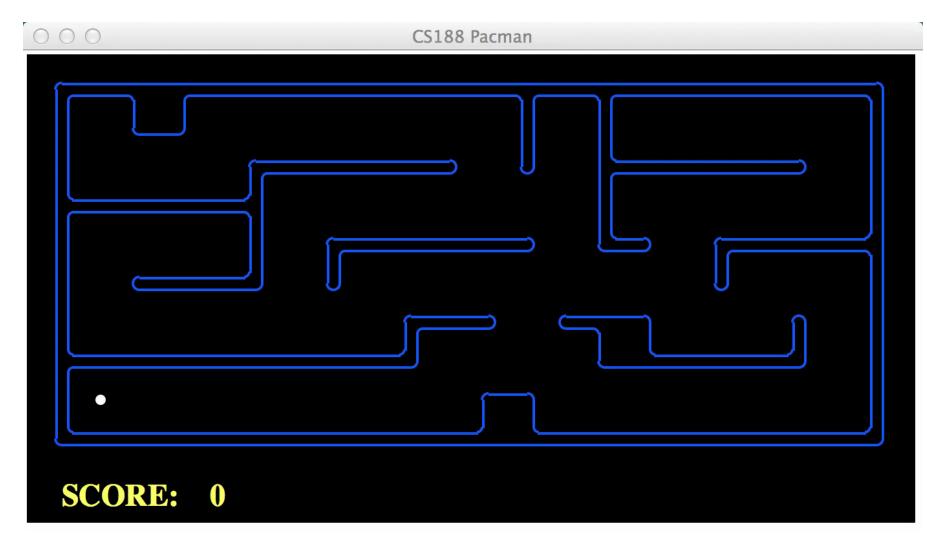


Uniform Cost Search (UCS): Pathing in Pac-Man world

Color indicates when state was expanded during search.

Red = first

black = never

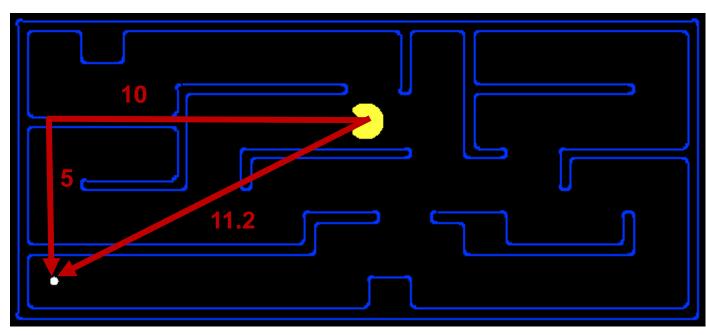


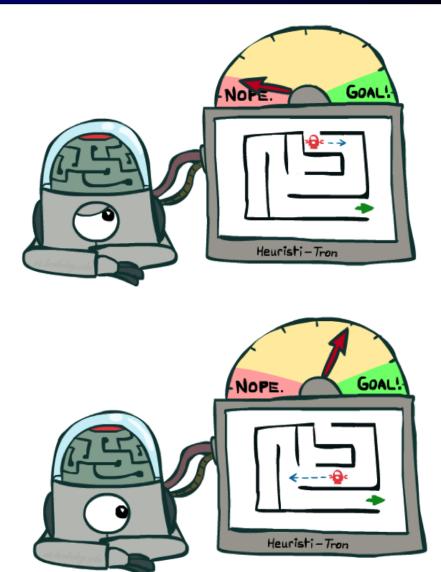
Informed Search

Search Heuristics

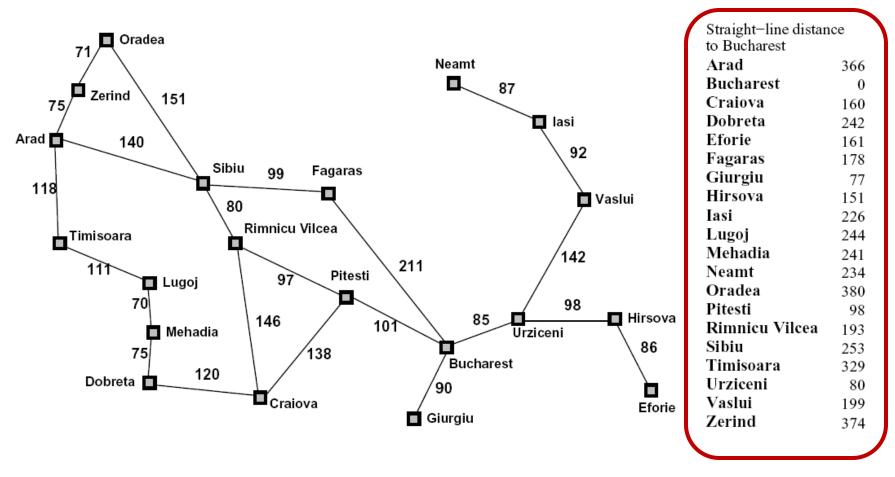
A heuristic is:

- A function that *estimates* how close a state is to a goal
- Maps a state to a number
- Designed for a particular search problem
- Example: Manhattan distance for pathing
- Example: Euclidean distance for pathing





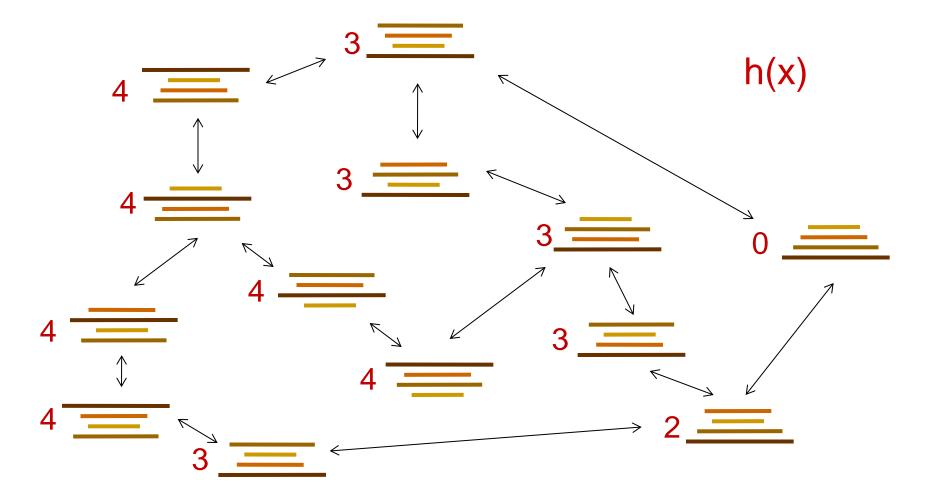
Example: Heuristic Function



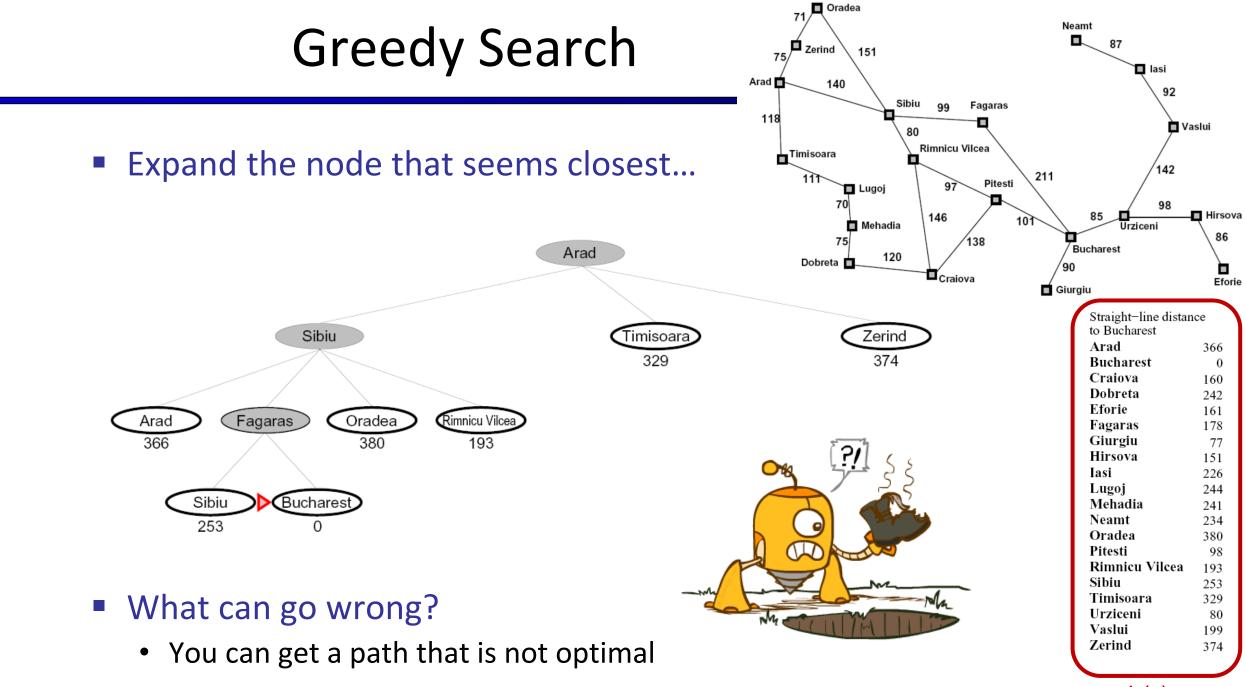
h(x)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place



Greedy Search



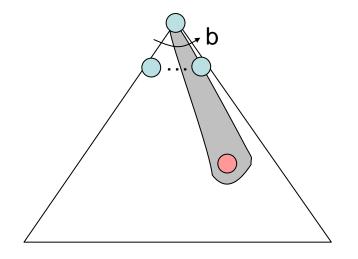
h(x)

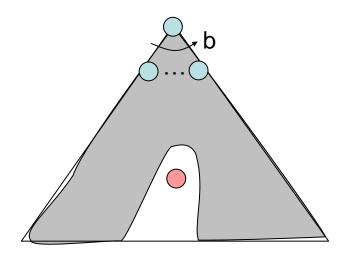
Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS



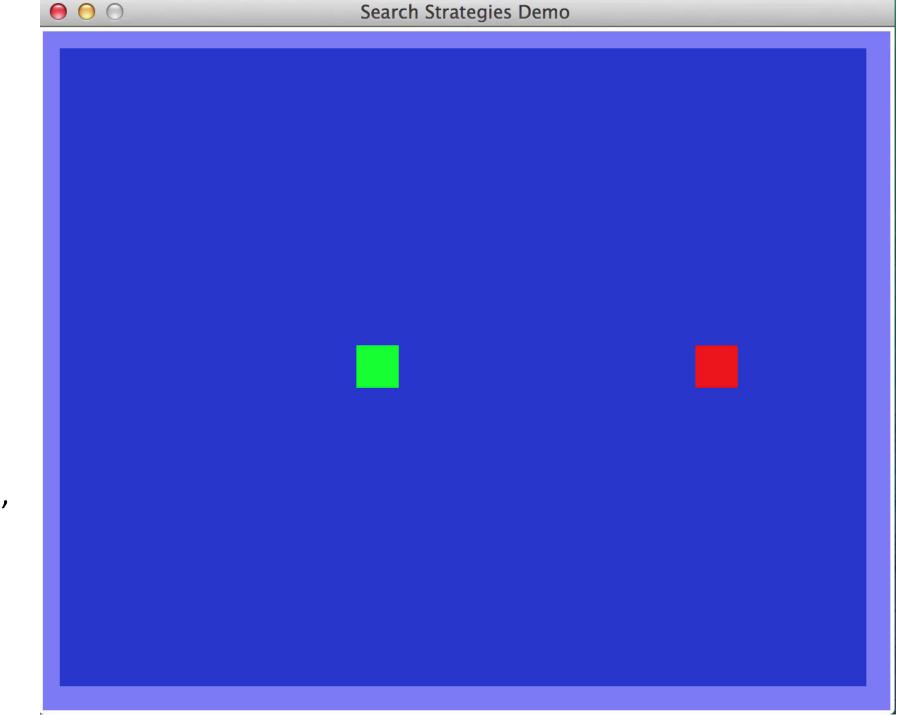


Breadth-First Search (BFS)

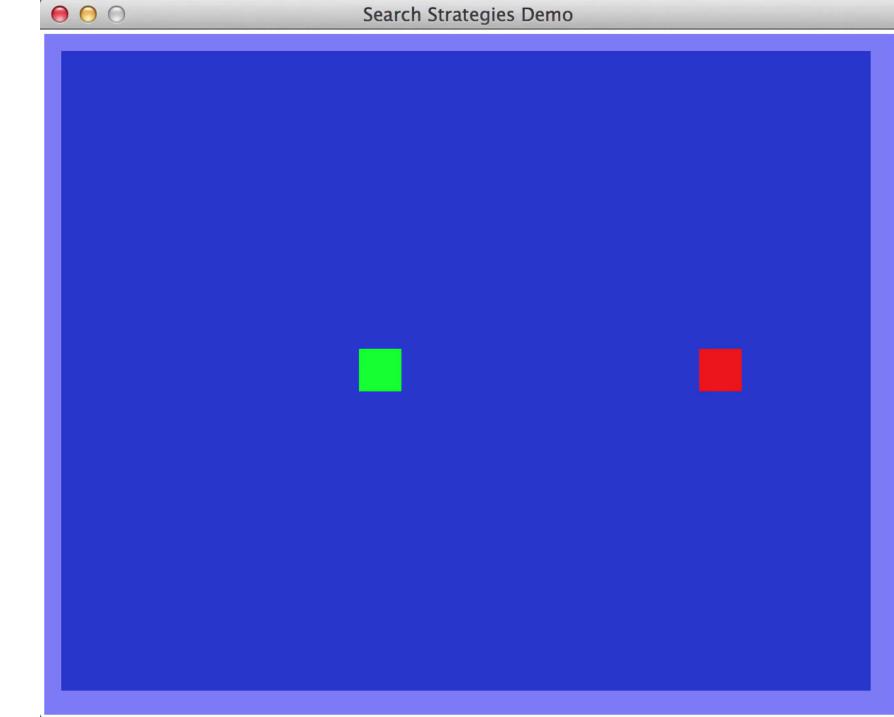
-or-

Uniform Cost Search (UCS) Note: since all costs 1,

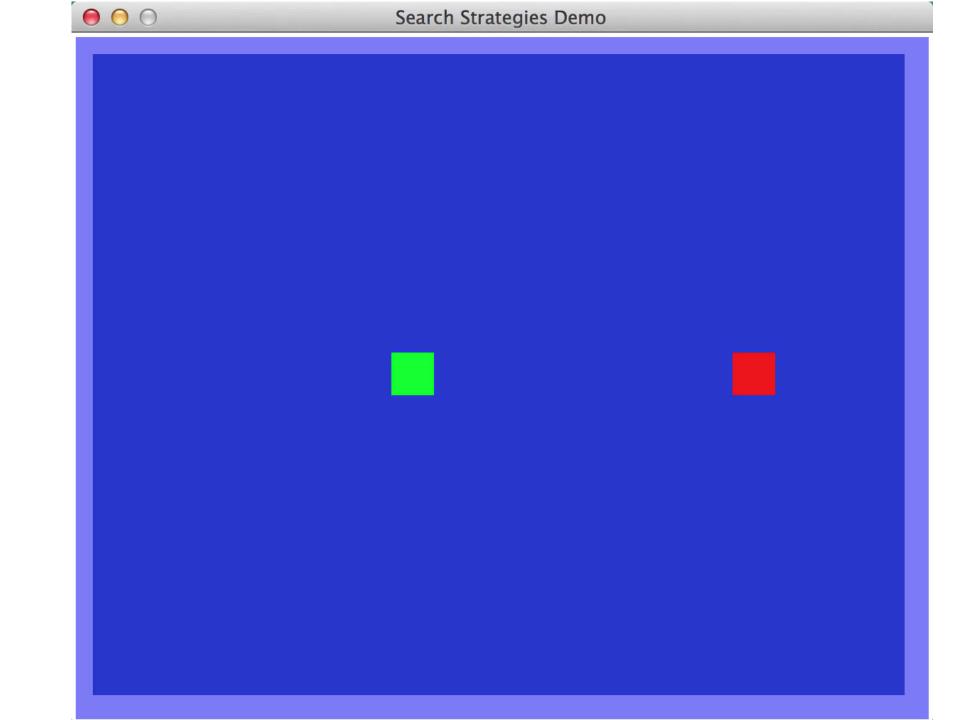
behaves the same as BFS



Depth-First Search (DFS)



Greedy search

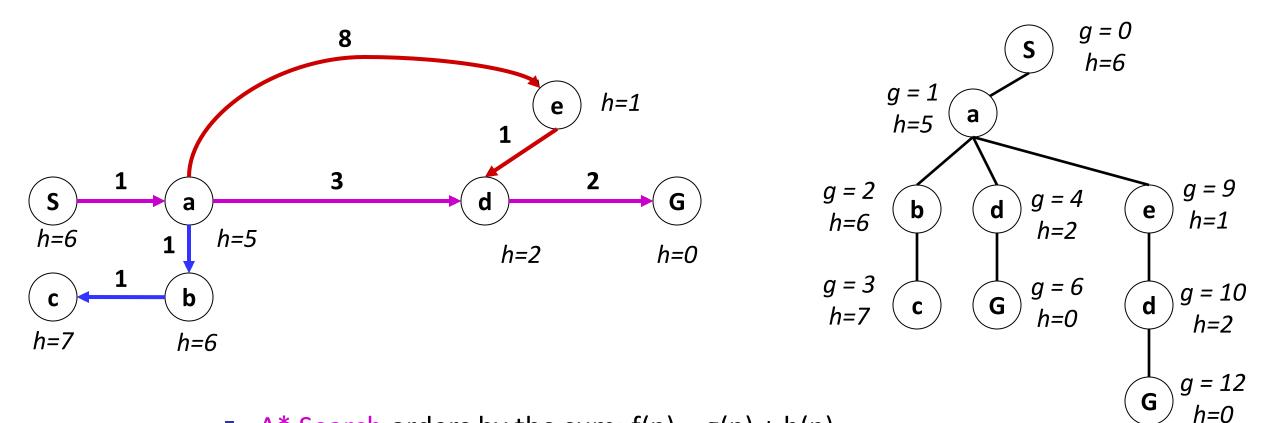


A* Search

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or *forward cost* h(n)

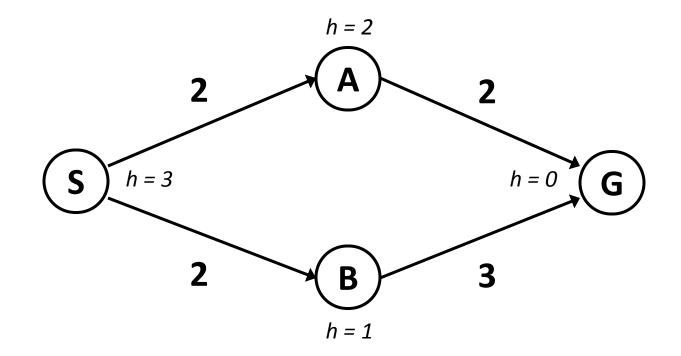


A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

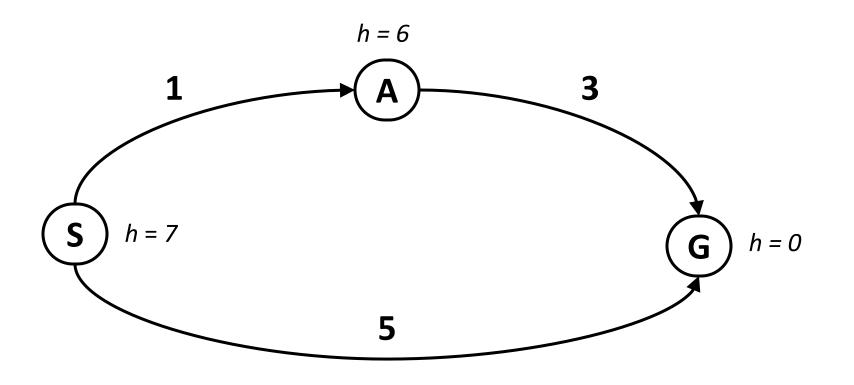
When should A* terminate?

Should we stop when we enqueue a goal?



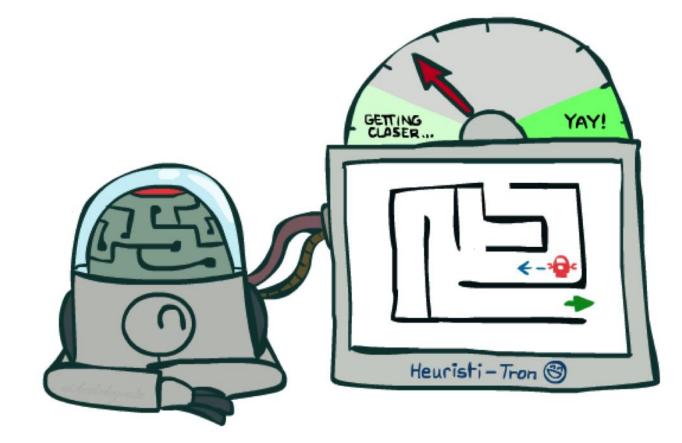
No: only stop when we dequeue a goal

Is A* Optimal?

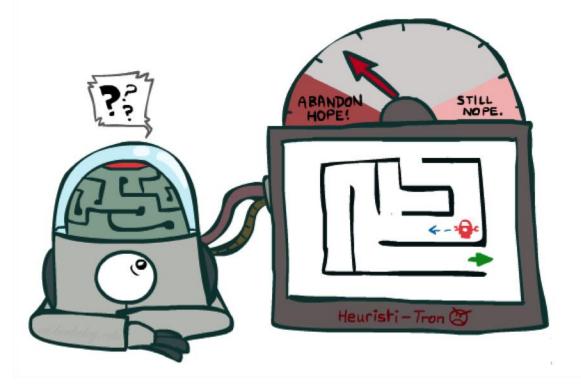


- What went wrong?
- Actual bad goal cost < estimated good goal cost</p>
- We need estimates to be less than actual costs!

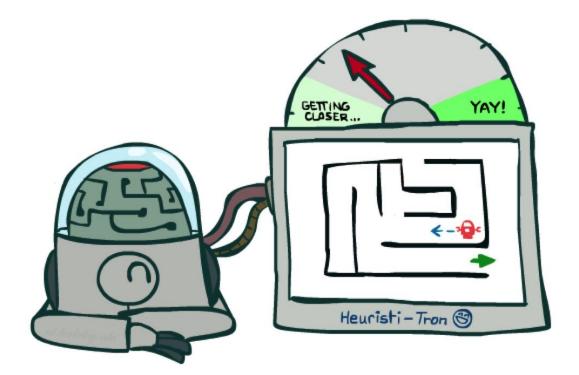
Admissible Heuristics



Idea: Admissibility



Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe



Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

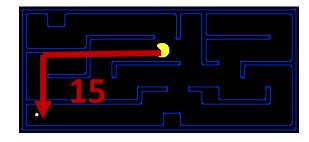
Admissible Heuristics

A heuristic h is admissible (optimistic) if:

 $0 \leq h(n) \leq h^*(n)$

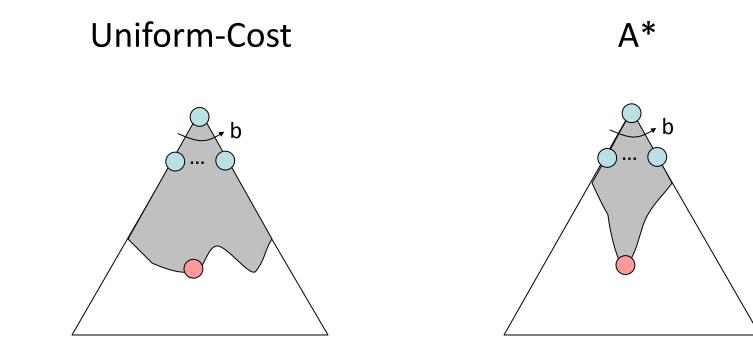
where $h^*(n)$ is the true cost to a nearest goal

Examples:



 Coming up with admissible heuristics is most of what's involved in using A* in practice.

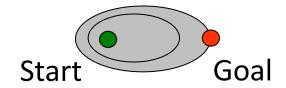
Properties of A*

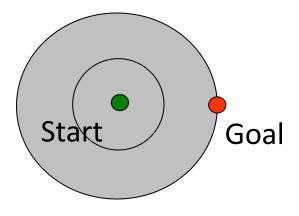


UCS vs A* Contours

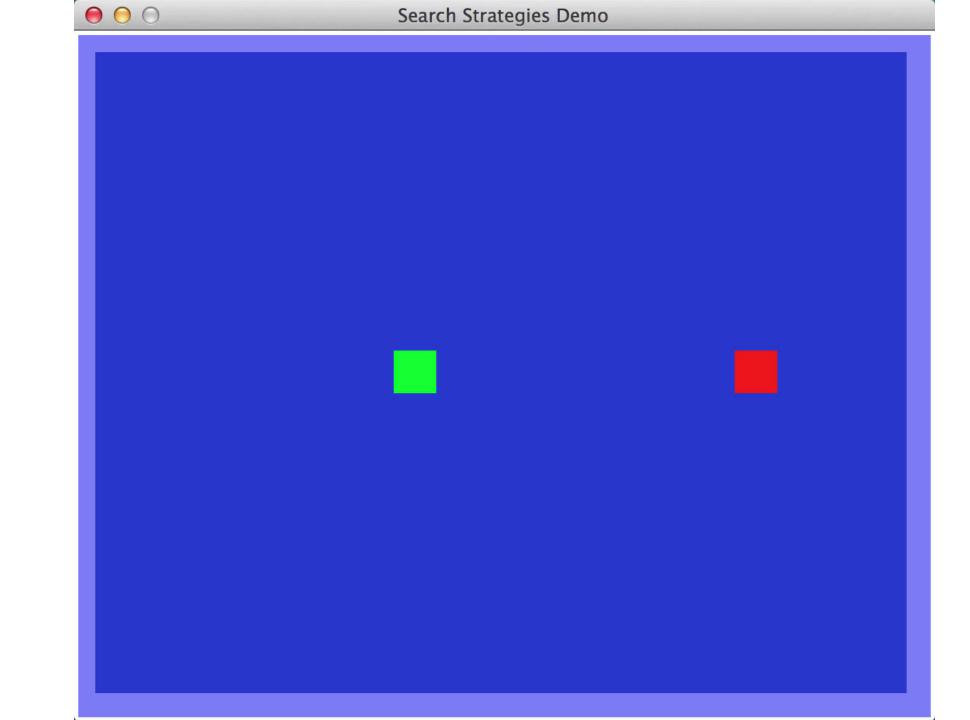
 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality





A* search

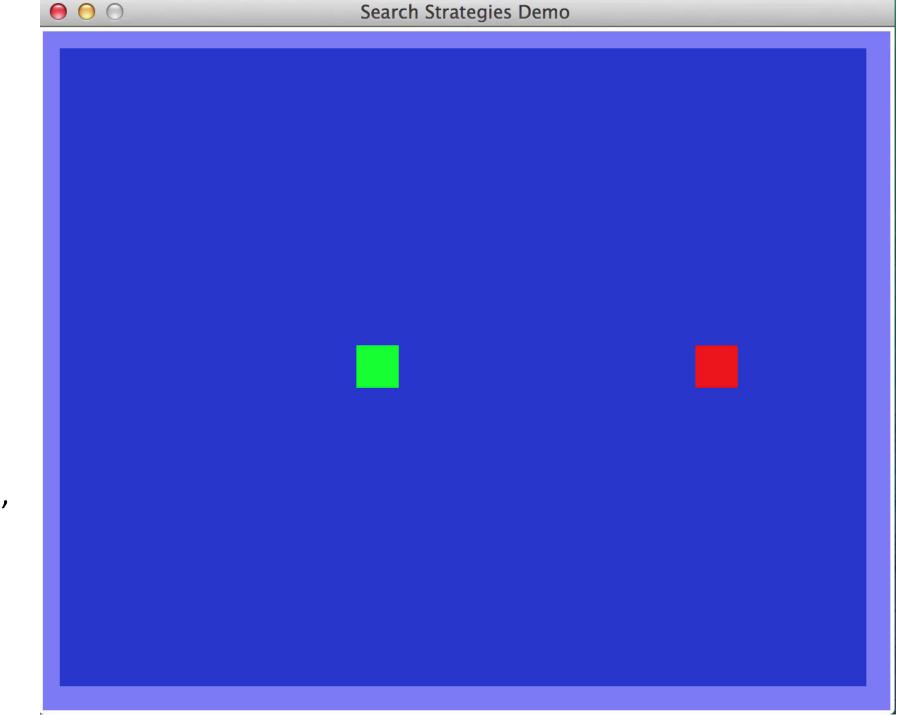


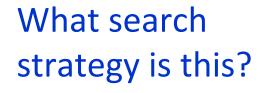
Breadth-First Search (BFS)

-or-

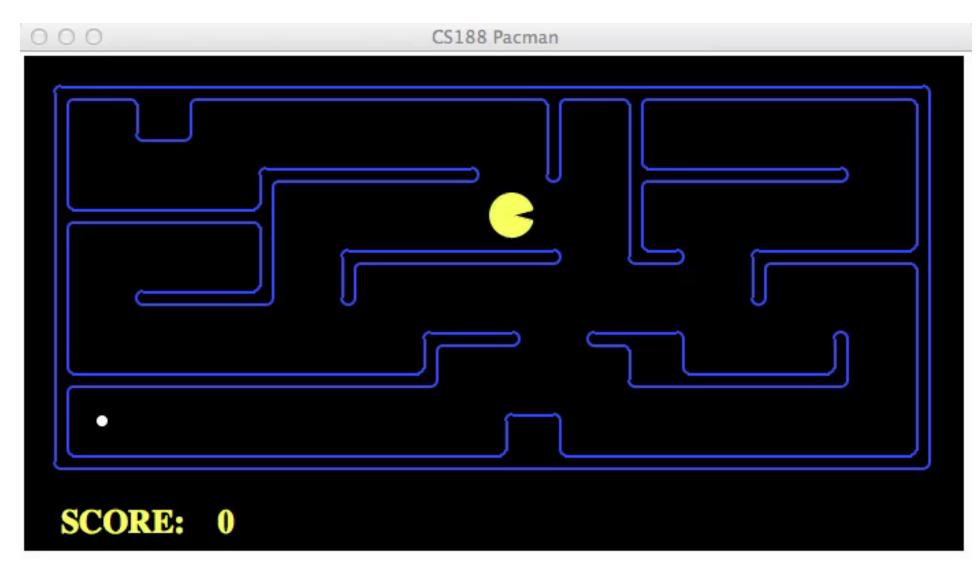
Uniform Cost Search (UCS) Note: since all costs 1,

behaves the same as BFS

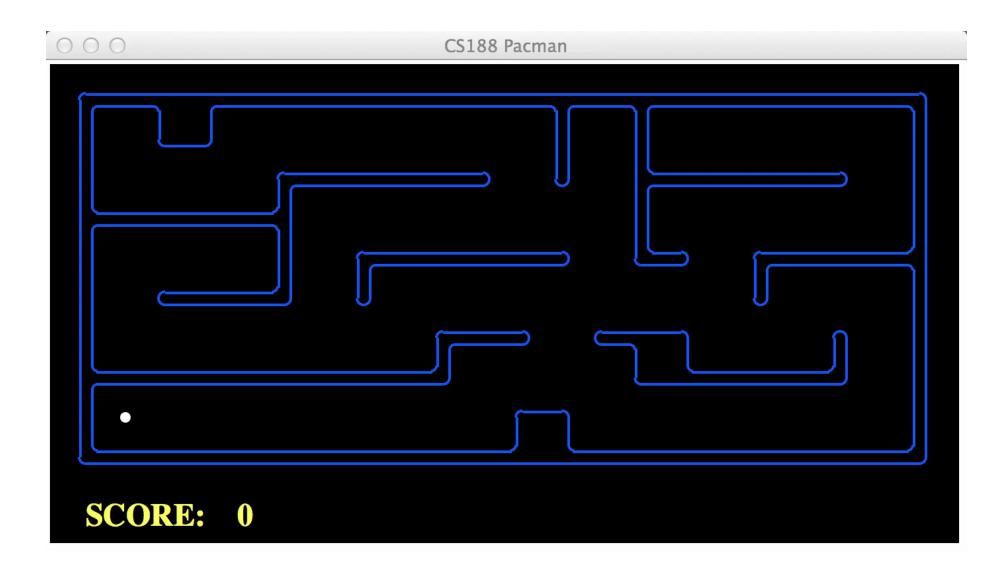




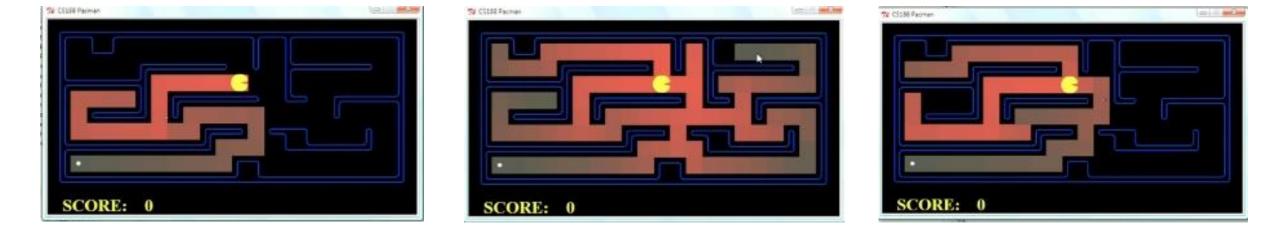
Greedy search



Uniform Cost Search (UCS)



Comparison

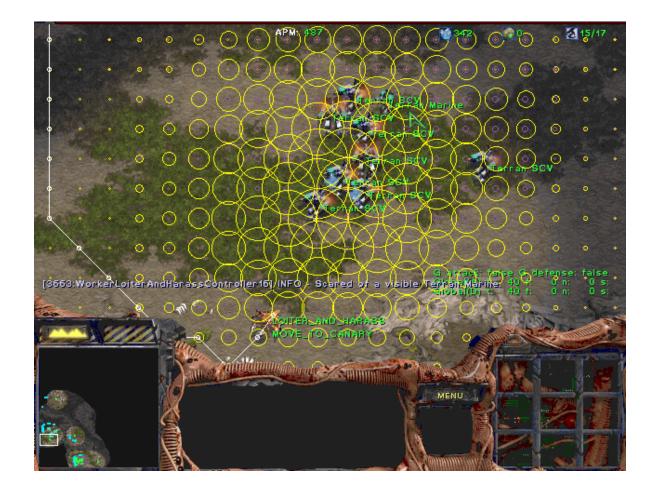


Greedy

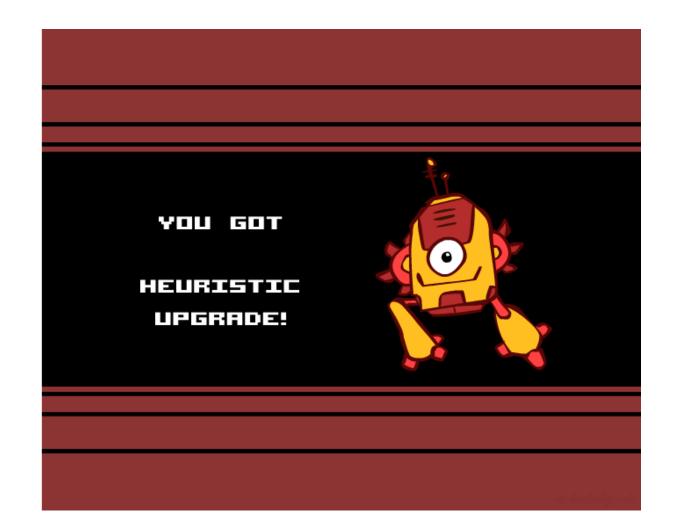
Uniform Cost

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

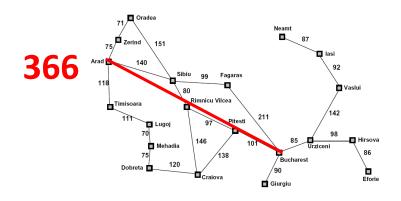


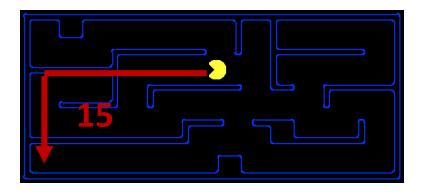
Creating Heuristics



Creating Admissible Heuristics

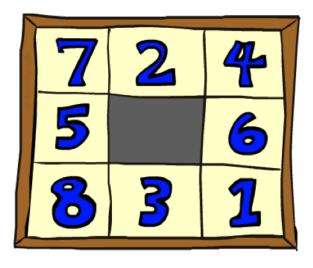
- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available





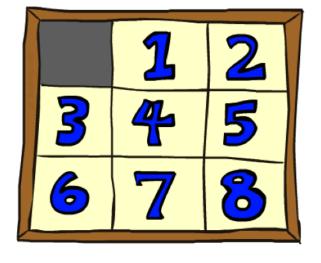
Inadmissible heuristics are often useful too

Example: 8 Puzzle



Start State

Actions

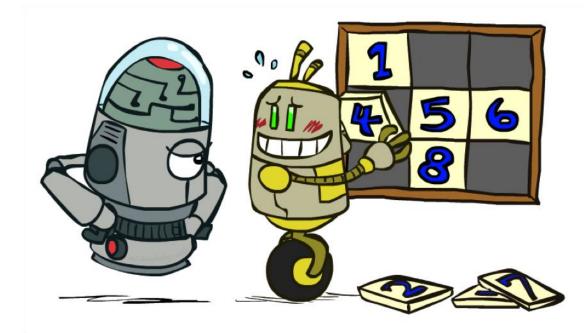


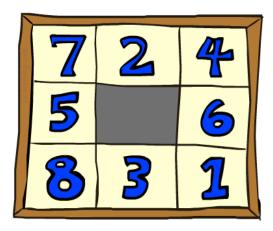
Goal State

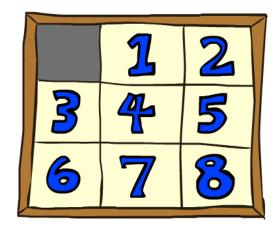
- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a *relaxed-problem* heuristic







Start State

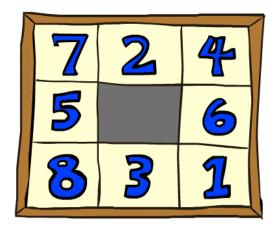
Goal State

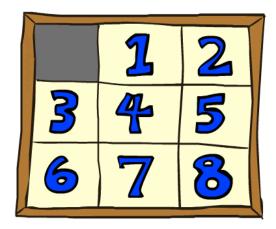
	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18





Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

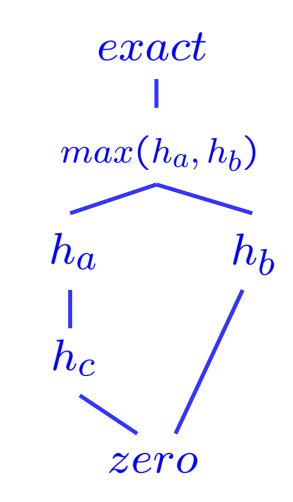
• Dominance: $h_a \ge h_c$ if

 $\forall n : h_a(n) \geq h_c(n)$

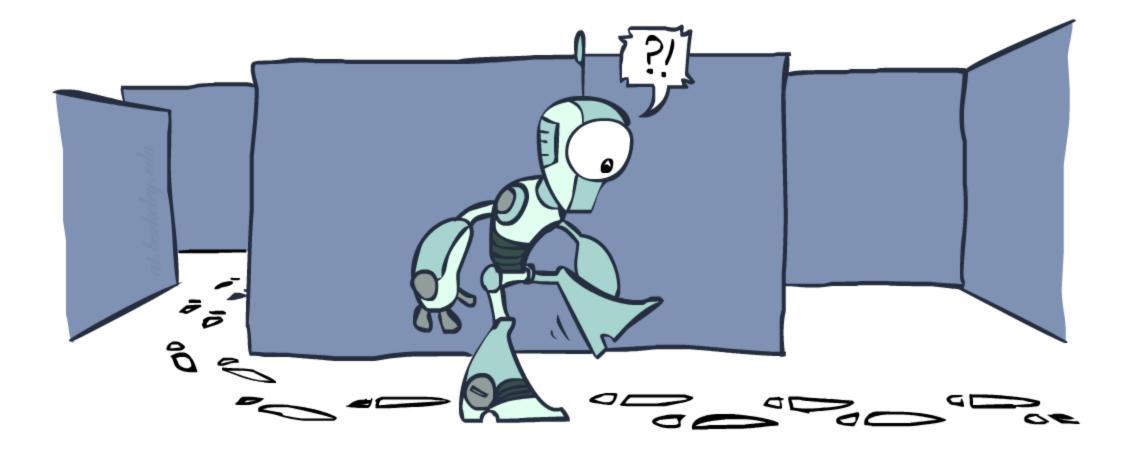
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

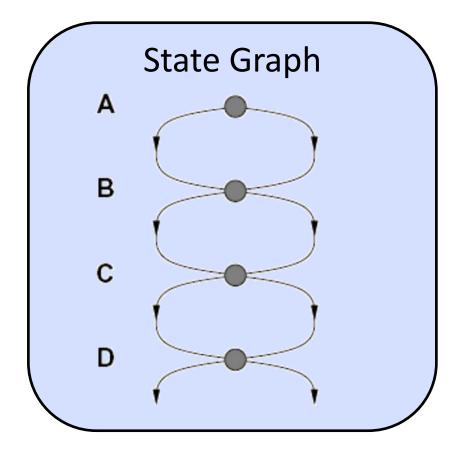


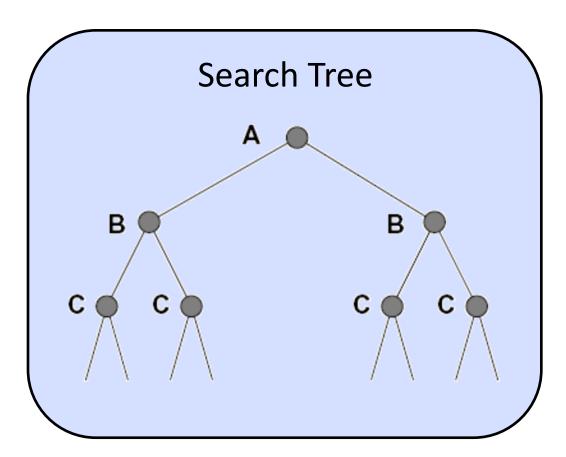
Graph Search



Tree Search: Extra Work!

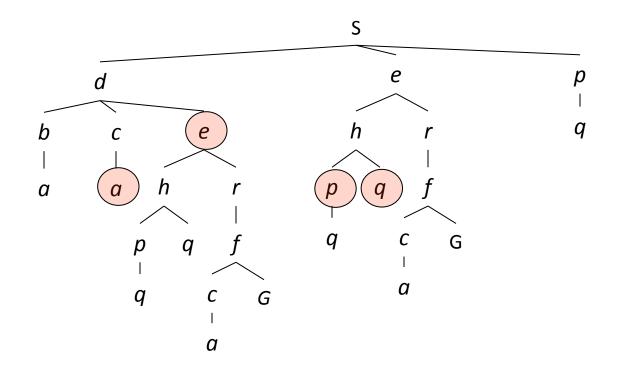
Failure to detect repeated states can cause exponentially more work.





Graph Search

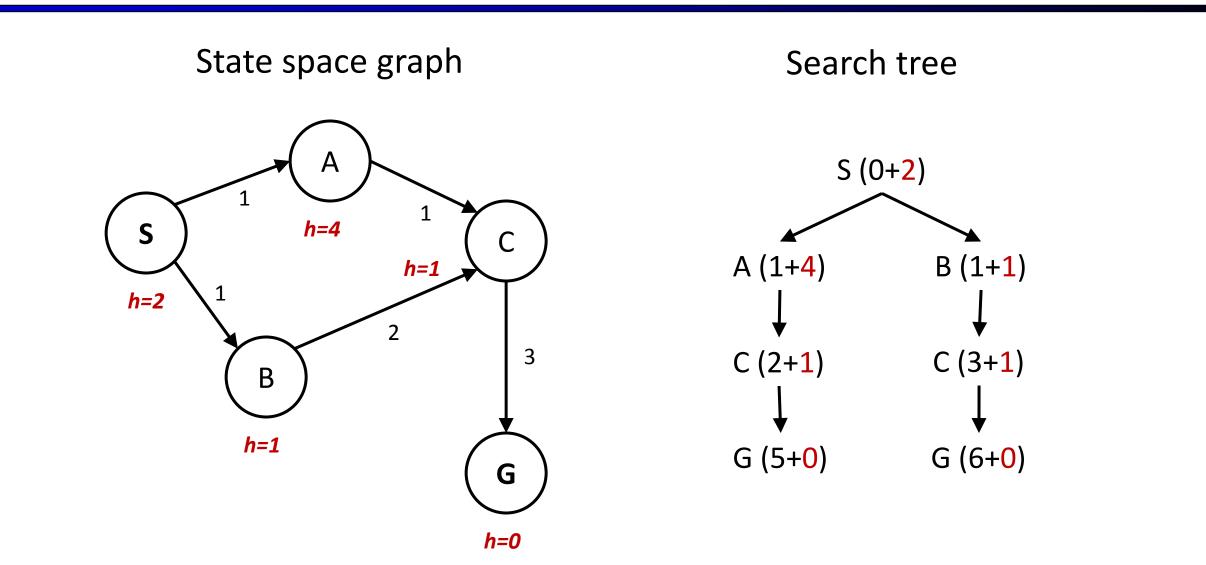
In BFS, for example, we shouldn't bother expanding the circled nodes (why?)



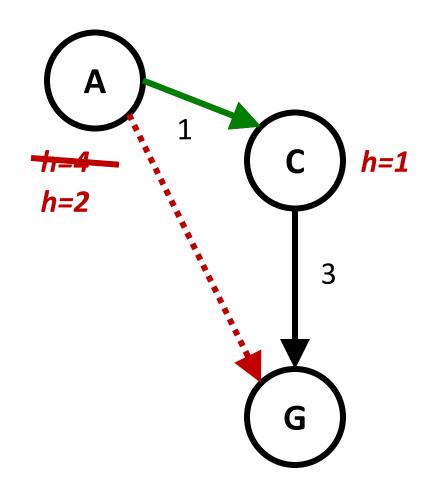
Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?



Consistency of Heuristics



- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

$h(A) \leq actual cost from A to G$

- Consistency: heuristic "arc" cost ≤ actual cost for each arc
 h(A) h(C) ≤ cost(A to C)
- Consequences of consistency:
 - The f value along a path never decreases

 $h(A) \leq cost(A to C) + h(C)$

A* graph search is optimal

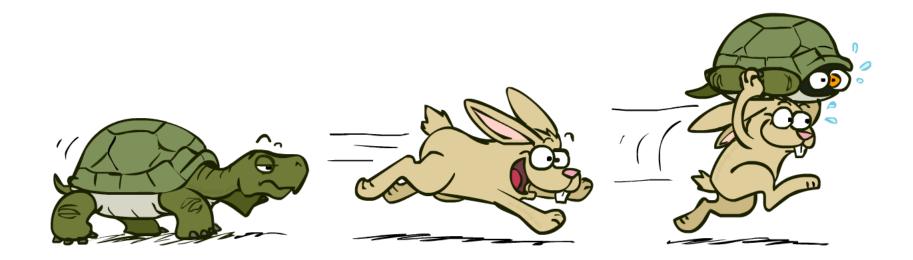
Optimality

Tree search:

- A* is optimal if heuristic is admissible
- UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems



Tree Search Pseudo-Code

Graph Search Pseudo-Code

```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed \leftarrow an empty set
fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)
loop do
    if fringe is empty then return failure
    node \leftarrow \text{REMOVE-FRONT}(fringe)
    if GOAL-TEST(problem, STATE[node]) then return node
    if STATE [node] is not in closed then
        add STATE[node] to closed
        for child-node in EXPAND(STATE[node], problem) do
            fringe \leftarrow \text{INSERT}(child-node, fringe)
        end
end
```