# Probability



[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

# **Our Status**

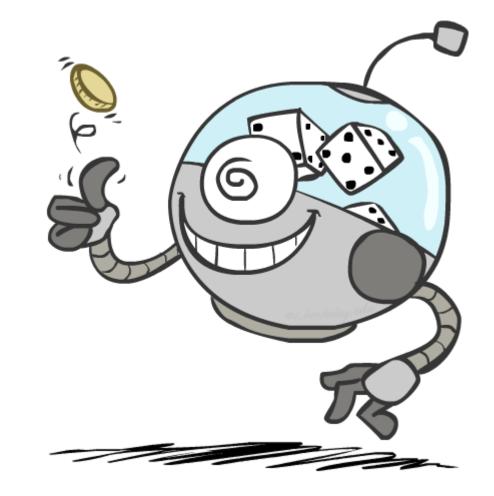
- We're done with Part I Search and Planning!
- Part II: Probabilistic Reasoning
  - Diagnosis
  - Speech recognition
  - Tracking objects
  - Robot mapping
  - Genetics
  - Error correcting codes
  - Interpretended in the second secon
- Part III: Machine Learning



# Today

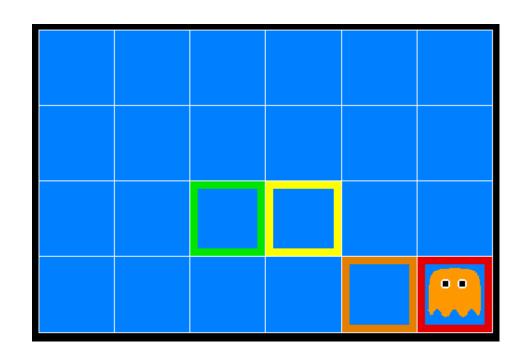
### Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!



# Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
  - On the ghost: red
  - 1 or 2 away: orange
  - 3 or 4 away: yellow
  - 5+ away: green



Sensors are noisy, but we know P(Color | Distance)

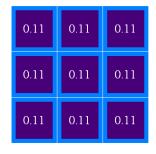
| P(red   3) | P(orange   3) | P(yellow   3) | P(green   3) |
|------------|---------------|---------------|--------------|
| 0.05       | 0.15          | 0.5           | 0.3          |

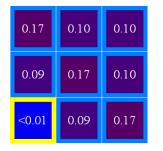
[Demo: Ghostbuster – no probability (L12D1)]

# Uncertainty

### General situation:

- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

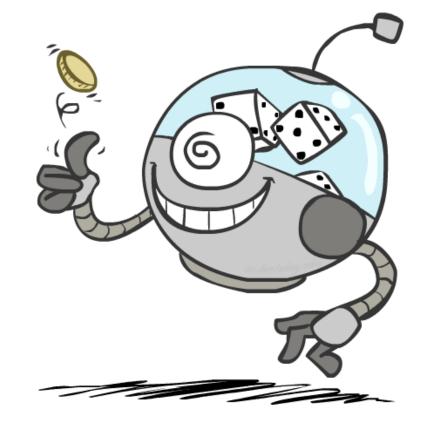






# **Random Variables**

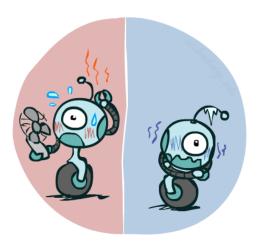
- A random variable is some aspect of the world about which we (may) have uncertainty
  - R = Is it raining?
  - T = Is it hot or cold?
  - D = How long will it take to drive to work?
  - L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
  - R in {true, false} (often write as {+r, -r})
  - T in {hot, cold}
  - D in [0, ∞)
  - L in possible locations, maybe {(0,0), (0,1), ...}

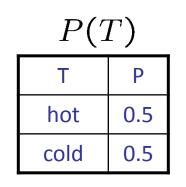


# **Probability Distributions**

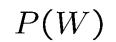
- Associate a probability with each value
  - Temperature:

• Weather:





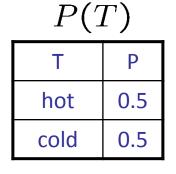


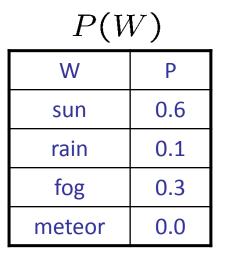


| W      | Р   |
|--------|-----|
| sun    | 0.6 |
| rain   | 0.1 |
| fog    | 0.3 |
| meteor | 0.0 |

# **Probability Distributions**

#### Unobserved random variables have distributions





- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

P(W = rain) = 0.1

Must have:

$$\forall x \ P(X = x) \ge 0$$
 and

$$\sum_{x} P(X = x) = 1$$

$$P(hot) = P(T = hot),$$
  

$$P(cold) = P(T = cold),$$
  

$$P(rain) = P(W = rain),$$
  
....

Shorthand notation:

OK *if* all domain entries are unique

# Joint Distributions

• A *joint distribution* over a set of random variables:  $X_1, X_2, \ldots X_n$  specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$
  
 $P(x_1, x_2, \dots, x_n)$ 

• Must obey:  $P(x_1, x_2, \dots x_n) \geq 0$ 

$$\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$$

| $\boldsymbol{D}$ | (Т | 7 | W  | ) |
|------------------|----|---|----|---|
| 1                |    | , | VV | ) |

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

- Size of distribution if n variables with domain sizes d?
  - For all but the smallest distributions, impractical to write out!

# **Probabilistic Models**

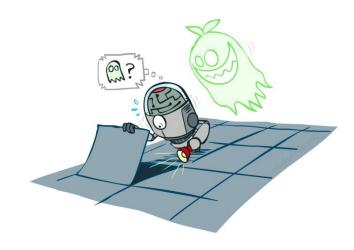
- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
  - (Random) variables with domains
  - Assignments are called *outcomes*
  - Joint distributions: say whether assignments (outcomes) are likely
  - Normalized: sum to 1.0
  - Ideally: only certain variables directly interact
- Constraint satisfaction problems:
  - Variables with domains
  - Constraints: state whether assignments are possible
  - Ideally: only certain variables directly interact

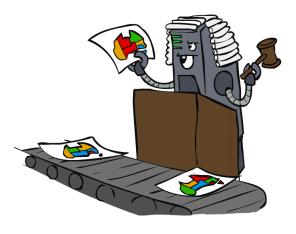
| -    |      |     |
|------|------|-----|
| Т    | W    | Р   |
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

Distribution over T,W

#### Constraint over T,W

| Т    | W    | Р |
|------|------|---|
| hot  | sun  | Т |
| hot  | rain | F |
| cold | sun  | F |
| cold | rain | Т |



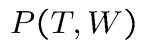


### Events

• An *event* is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

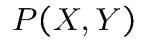
- From a joint distribution, we can calculate the probability of any event
  - Probability that it's hot AND sunny?
     0.4
  - Probability that it's hot?
     0.4 + 0.1 = 0.5
  - Probability that it's hot OR sunny?
     0.4 + 0.1 + 0.2 = 0.7
- Typically, the events we care about are partial assignments, like P(T=hot)



| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

### Quiz: Events

P(+x, +y) ?
0.2



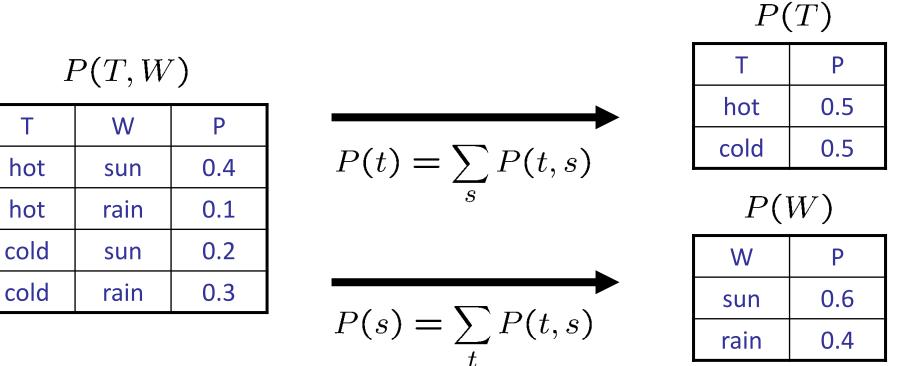
| Х  | Υ  | Р   |
|----|----|-----|
| +x | +y | 0.2 |
| +x | -у | 0.3 |
| -X | +у | 0.4 |
| -X | -у | 0.1 |

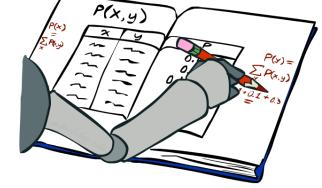
P(+x) ?
0.2 + 0.3 = 0.5

P(-y OR +x) ?
0.2 + 0.3 + 0.1 = 0.6

# **Marginal Distributions**

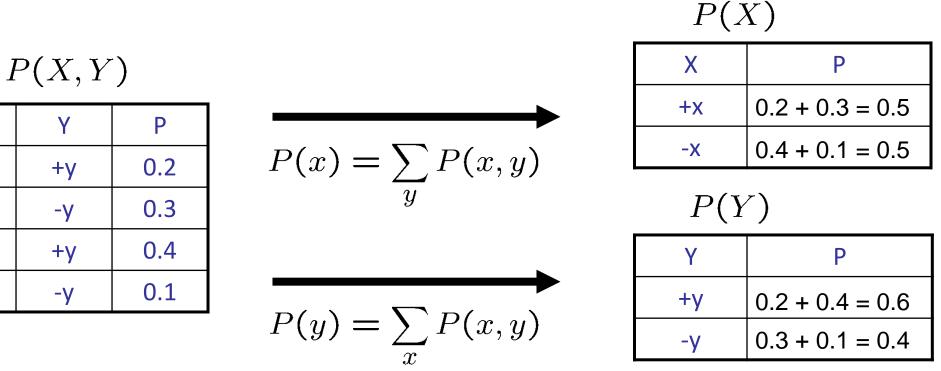
- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

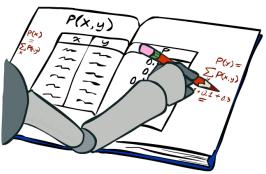




| $P(X_1 = x_1) =$ | $\sum P(X_1 = x_1, X_2 = x_2)$ |
|------------------|--------------------------------|
|                  | $x_2$                          |

### **Quiz: Marginal Distributions**





Х

**+**X

+X

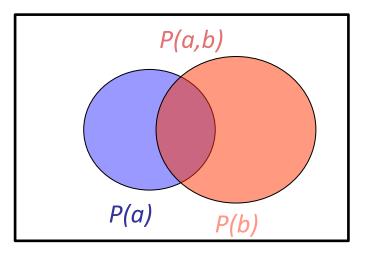
-X

-X

# **Conditional Probabilities**

- A simple relation between joint and conditional probabilities
  - In fact, this is taken as the *definition* of a conditional probability
  - P(a|b) = "probability of a happening given b happened"

$$P(a|b) = \frac{P(a,b)}{P(b)}$$



P(T,W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$
$$= P(W = s, T = c) + P(W = r, T = c)$$
$$= 0.2 + 0.3 = 0.5$$

### **Quiz: Conditional Probabilities**

• 
$$P(+x | +y)$$
?  $\frac{P(+x, +y)}{P(+y)} = \frac{0.2}{0.2 + 0.4} = \frac{1}{3}$ 

| P( | (X, | Y) |
|----|-----|----|
|    |     | -  |

| X  | Y  | Р   |
|----|----|-----|
| +x | +y | 0.2 |
| +x | -у | 0.3 |
| -X | +y | 0.4 |
| -X | -у | 0.1 |

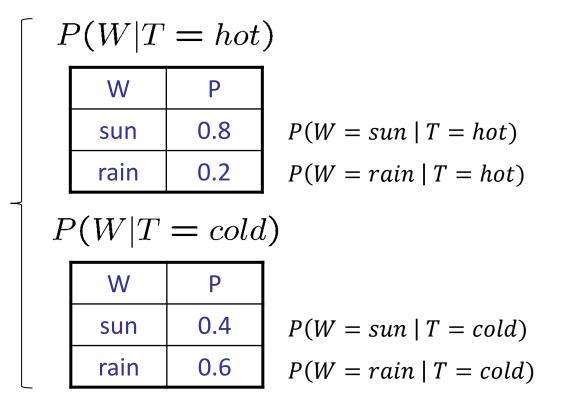
• 
$$P(-x | +y)$$
?  $\frac{P(-x, +y)}{P(+y)} = \frac{0.4}{0.2 + 0.4} = \frac{2}{3}$   
•  $P(-y | +x)$ ?  $\frac{P(-y, +x)}{P(+x)} = \frac{0.3}{0.2 + 0.3} = \frac{3}{5}$ 

## **Conditional Distributions**

 Conditional distributions are probability distributions over some variables given fixed values of others

**Conditional Distributions** 

P(W|T)



Joint Distribution

P(T,W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

# **Normalization Trick**

0.2 + 0.3

Going from a joint distribution to a conditional distribution

P(T,W)

W

sun

rain

sun

rain

Т

hot

hot

cold

cold

Ρ

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W|T = c)$$

$$\frac{W \quad P}{sun \quad 0.4}$$

$$rain \quad 0.6$$

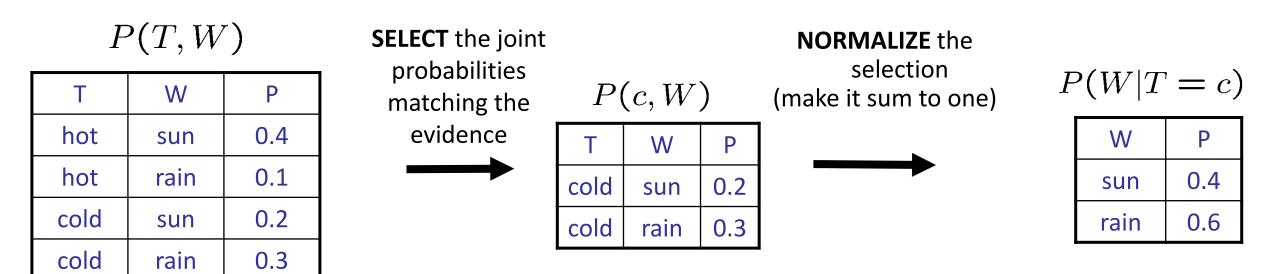
$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.3 + 0.6}$$

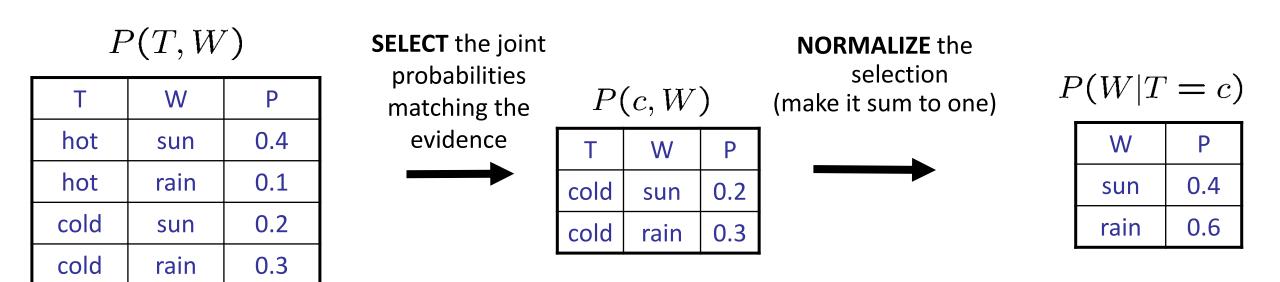
## **Normalization Trick**

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$
  
= 
$$\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
  
= 
$$\frac{0.2}{0.2 + 0.3} = 0.4$$



$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

# **Normalization Trick**

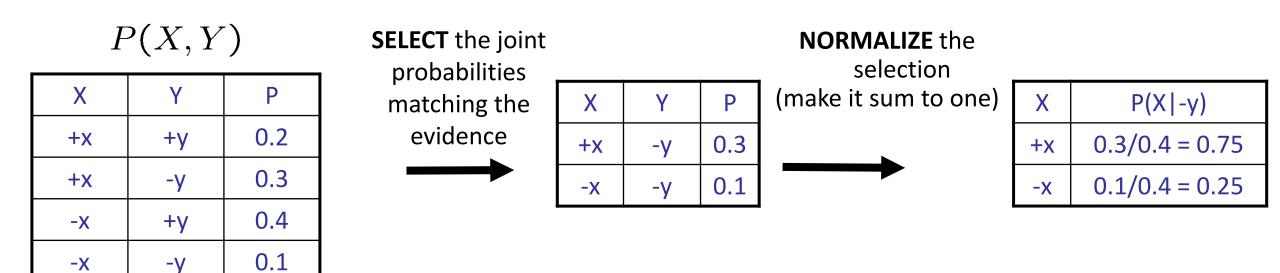


Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

## **Quiz: Normalization Trick**

P(X | Y=-y) ?



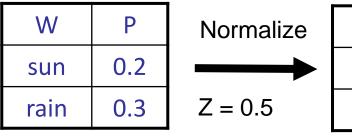
# To Normalize

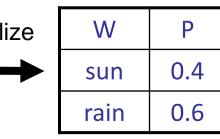
(Dictionary) To bring or restore to a normal condition

#### Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

#### Example 1

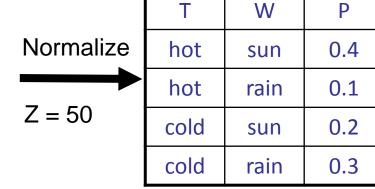




### Example 2

| Т    | W    | Р  |
|------|------|----|
| hot  | sun  | 20 |
| hot  | rain | 5  |
| cold | sun  | 10 |
| cold | rain | 15 |

All entries sum to ONE



# **Probabilistic Inference**

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
  - P(on time | no reported accidents) = 0.90
  - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
  - P(on time | no accidents, 5 a.m.) = 0.95
  - P(on time | no accidents, 5 a.m., raining) = 0.80
  - Observing new evidence causes beliefs to be updated



# Inference by Enumeration

- General case:
  - Evidence variables:
  - Query\* variable:
  - Hidden variables:
- $\begin{bmatrix} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{bmatrix} X_1, X_2, \dots X_n$ All variables

 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$ 

We want:

\* Works fine with multiple query variables, too

 $P(Q|e_1\ldots e_k)$ 

 Step 1: Select the entries consistent with the evidence

-3

- 1

5

 $\otimes$ 

Pa

0.05

0.25

0.2

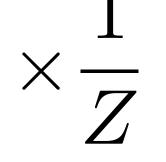
0.01

0.07

0.15



Step 3: Normalize



 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$  $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$ 

# Inference by Enumeration

|                     |       |                                  |   | C      | <b>—</b> | 14/  | D    |
|---------------------|-------|----------------------------------|---|--------|----------|------|------|
|                     | W     | P(W)                             |   | S      | Т        | W    | Р    |
| E = {}, H = {S, T}  | sun   | 0.30 + 0.10 + 0.10 + 0.15 = 0.65 |   | summer | hot      | sun  | 0.30 |
| . – (), 11 – (3, 1) | rain  | 0.05 + 0.05 + 0.05 + 0.20 = 0.35 |   | summer | hot      | rain | 0.05 |
|                     | Talli | 0.03 + 0.03 + 0.03 + 0.20 - 0.33 | ſ | summer | cold     | sun  | 0.10 |
| vinter)?            |       |                                  | F | summer | cold     | rain | 0.05 |
| = {S}, H = {T}      | W     | P(W   winter)                    | F | winter | hot      | sun  | 0.10 |
|                     | sun   | (0.10 + 0.15) / 0.50 = 0.50      | ┢ | winter | hot      | rain | 0.05 |
|                     | rain  | (0.05 + 0.20) / 0.50 = 0.50      | ┢ | winter | cold     | sun  | 0.15 |
|                     |       |                                  |   | witter | COIU     | Sull | 0.15 |
| vinter, hot)?       |       |                                  |   | winter | cold     | rain | 0.20 |
|                     | \٨/   | P(W   winter hot)                |   |        |          |      |      |

P(W)?

Q = {W}, E

P(W | w)

 $Q = \{W\}, E =$ 

P(W | w)  $Q = \{W\}, E = \{S, T\}, H = \{\}$ 

| W    | P(W   winter, hot) |
|------|--------------------|
| sun  | 0.10 / 0.15 = 2/3  |
| rain | 0.05 / 0.15 = 1/3  |

# Inference by Enumeration

#### Obvious problems:

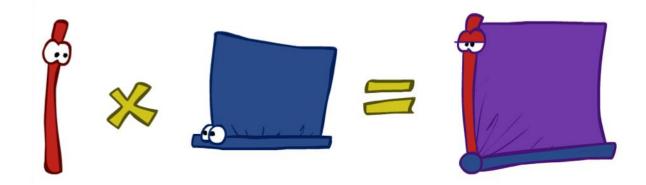
- Worst-case time complexity O(d<sup>n</sup>)
- Space complexity O(d<sup>n</sup>) to store the joint distribution

## The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$
  $(x|y) = \frac{P(x,y)}{P(y)}$ 

n/



## The Product Rule

$$P(y)P(x|y) = P(x,y)$$

### • Example:

Ρ

0.8

0.2

P(W)

R

sun

rain

| P(  | D W  | )   |
|-----|------|-----|
| D   | W    | Р   |
| wet | sun  | 0.1 |
| dry | sun  | 0.9 |
| wet | rain | 0.7 |
| dry | rain | 0.3 |

| D   | W    | Р |
|-----|------|---|
| wet | sun  |   |
| dry | sun  |   |
| wet | rain |   |
| dry | rain |   |

P(D,W)

# The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

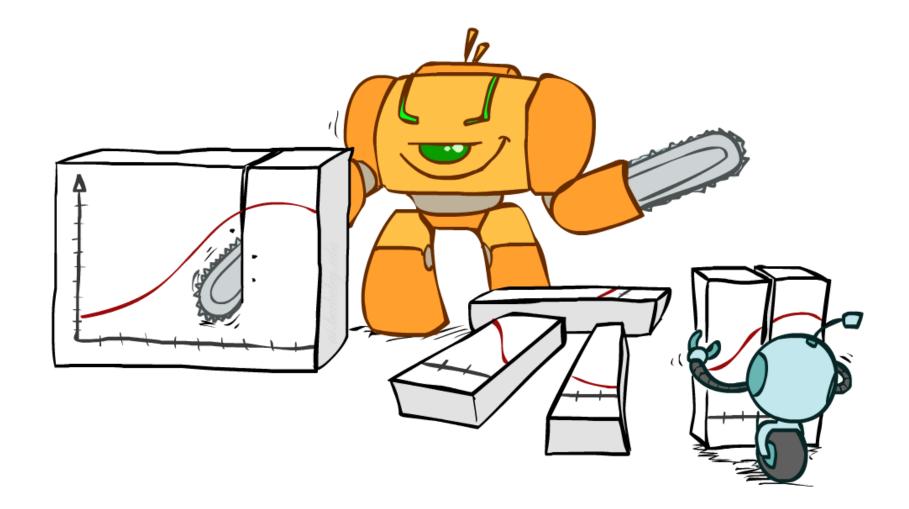
$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

Why is this always true?

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) = P(x_1)\frac{P(x_2, x_1)}{P(x_1)}\frac{P(x_3, x_1, x_2)}{P(x_1, x_2)}$$

# Bayes Rule

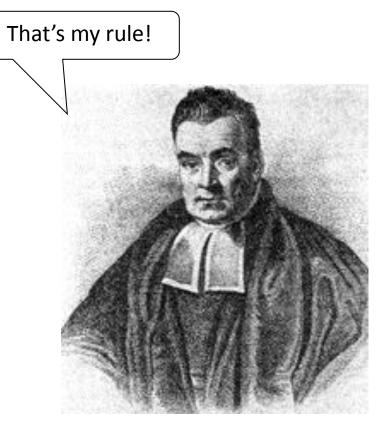


# Bayes' Rule

- Two ways to factor a joint distribution over two variables:
  - P(x,y) = P(x|y)P(y) = P(y|x)P(x)
- Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
  - Lets us build one conditional from its reverse
  - Often one conditional is tricky but the other one is simple
  - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!



# Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

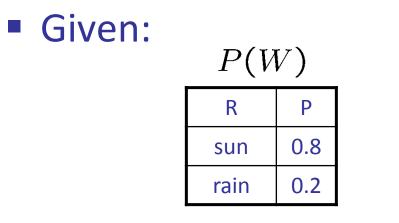
- Example:
  - M: meningitis, S: stiff neck

$$\begin{array}{c} P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01 \end{array} \end{array} \ \ \begin{array}{c} \mbox{Example} \\ \mbox{givens} \end{array} \ \ \end{array}$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small: 0.008
- Note: you should still get stiff necks checked out! Why?

# Quiz: Bayes' Rule



| P(D W) |      |     |
|--------|------|-----|
| D      | W    | Р   |
| wet    | sun  | 0.1 |
| dry    | sun  | 0.9 |
| wet    | rain | 0.7 |
| dry    | rain | 0.3 |

### What is P(W | dry) ?

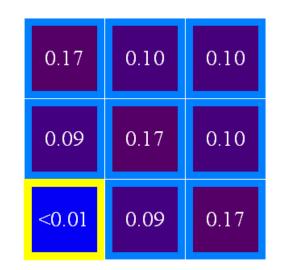
| W    | P(W   dry)                                                                                                                                                                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sun  | $P(sun dry) = \frac{P(dry sun)P(sun)}{P(dry)} = \frac{P(dry sun)P(sun)}{P(dry sun)P(sun) + P(dry rain)P(rain)} = \frac{0.9 * 0.8}{0.9 * 0.8 + 0.3 * 0.2} \approx 0.923$      |
| rain | $P(rain dry) = \frac{P(dry rain)P(rain)}{P(dry)} = \frac{P(dry rain)P(rain)}{P(dry sun)P(sun) + P(dry rain)P(rain)} = \frac{0.3 * 0.2}{0.9 * 0.8 + 0.3 * 0.2} \approx 0.077$ |

## Ghostbusters, Revisited

- Let's say we have two distributions:
  - Prior distribution over ghost location: P(G)
    - Let's say this is uniform
  - Sensor reading model: P(R | G)
    - Given: we know what our sensors do
    - R = reading color measured at (1,1)
    - E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

 $P(g|r) \propto P(r|g)P(g)$ 

| 0.11 | 0.11 | 0.11 |
|------|------|------|
| 0.11 | 0.11 | 0.11 |
| 0.11 | 0.11 | 0.11 |



#### [Demo: Ghostbuster – with probability (L12D2)]

## Independence

 $X \perp \!\!\!\perp Y$ 

• Two variables are *independent* in a joint distribution if:

P(X,Y) = P(X)P(Y) $\forall x, y P(x,y) = P(x)P(y)$ 

- Says the joint distribution *factors* into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a *modeling assumption* 
  - Independence can be a simplifying assumption
  - *Empirical* joint distributions: at best "close" to independent
  - What could we assume for {Weather, Traffic, Cavity}?
- Independence is like something from CSPs: what?



### Example: Independence?

| P(T) |                 |  |
|------|-----------------|--|
| Т    | Р               |  |
| hot  | 0.4 + 0.1 = 0.5 |  |
| cold | 0.2 + 0.3 = 0.5 |  |

 $P_1(T,W)$ 

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

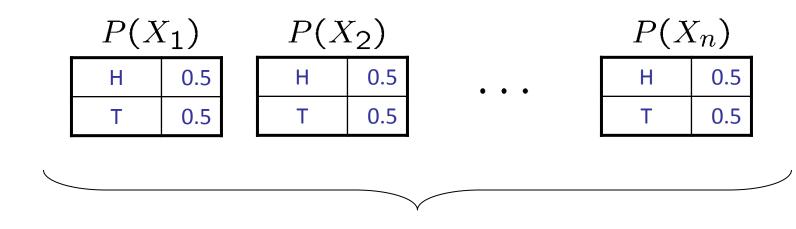
| P(W) |                 |  |
|------|-----------------|--|
| W    | Р               |  |
| sun  | 0.4 + 0.2 = 0.6 |  |
| rain | 0.1 + 0.3 = 0.4 |  |

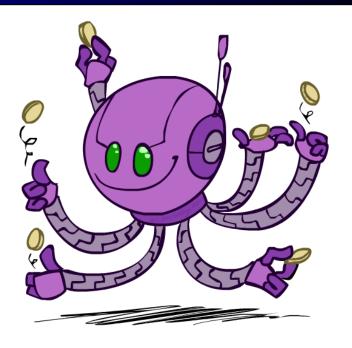
 $P_2(T,W) = P(T)P(W)$ 

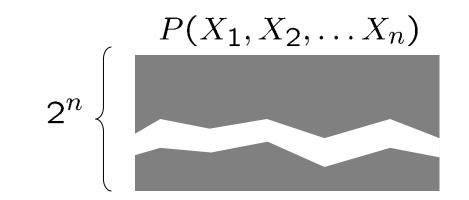
| Т    | W    | Р               |
|------|------|-----------------|
| hot  | sun  | 0.5 * 0.6 = 0.3 |
| hot  | rain | 0.5 * 0.4 = 0.2 |
| cold | sun  | 0.5 * 0.6 = 0.3 |
| cold | rain | 0.5 * 0.4 = 0.2 |

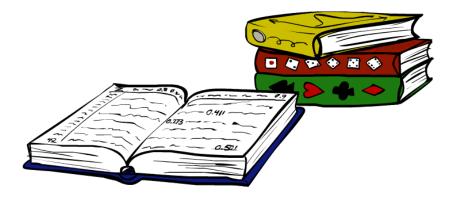
## Example: Independence

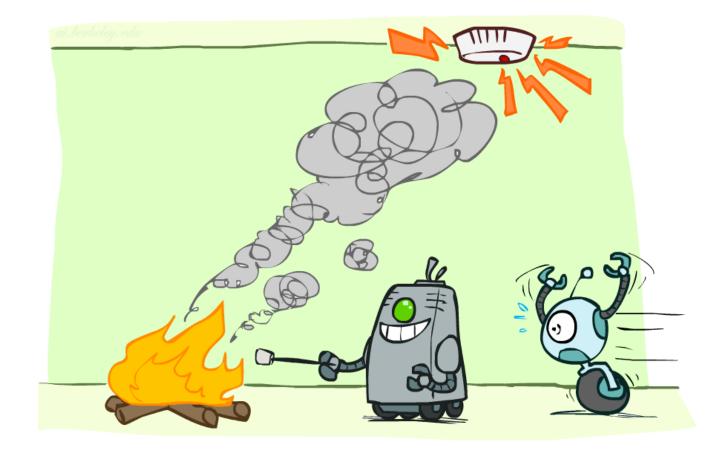
N fair, independent coin flips:



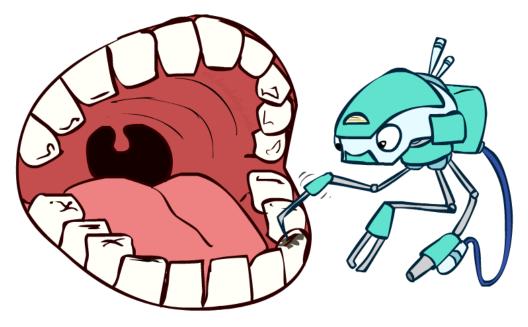








- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
  - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
  - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
  - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
  - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
  - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
  - One can be derived from the other easily



- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z



if and only if:

 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$ 

or, equivalently, if and only if

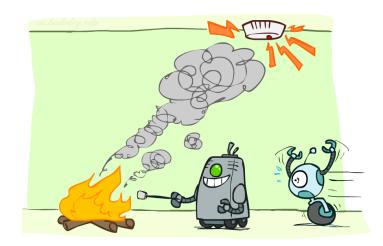
- What about this domain:
  - Traffic
  - Umbrella
  - Raining

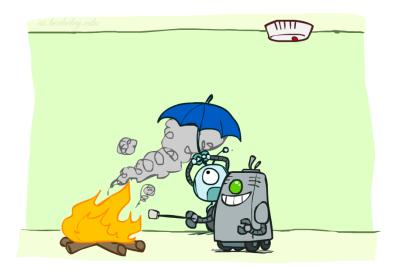




- What about this domain:
  - Fire
  - Smoke
  - Alarm







# Conditional Independence and the Chain Rule

- Chain rule:  $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$
- Trivial decomposition:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

Bayes'nets / graphical models help us express conditional independence assumptions



# **Ghostbusters Chain Rule**

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
   B: Bottom square is red
   G: Ghost is in the top

Givens:
 P(+g) = 0.5
 P(-g) = 0.5
 P(+t | +g) = 0.8
 P(+t | -g) = 0.4
 P(+b | +g) = 0.4
 P(+b | -g) = 0.8

0.50

P(T,B,G) = P(G) P(T | G) P(B | T, G)(assuming conditional independence) P(T,B,G) = P(G) P(T|G) P(B|G)

|  | Т  | В  | G   | P(T,B,G) |
|--|----|----|-----|----------|
|  | +t | +b | +g  | 0.16     |
|  | +t | +b | -b  | 0.16     |
|  | +t | -b | +g  | 0.24     |
|  | +t | -b | -00 | 0.04     |
|  | -t | +b | +g  | 0.04     |
|  | -t | +b | -bo | 0.24     |
|  | -t | -b | +g  | 0.06     |
|  | -t | -b | -g  | 0.06     |

