Probability

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

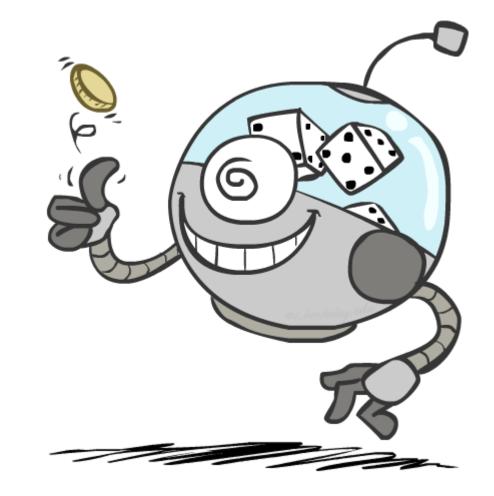
Our Status

- We're done with Part I Search and Planning!
- Part II: Probabilistic Reasoning
 - Diagnosis
 - Speech recognition
 - Tracking objects
 - Robot mapping
 - Genetics
 - Error correcting codes
 - Interpretended in the second secon
- Part III: Machine Learning

Today

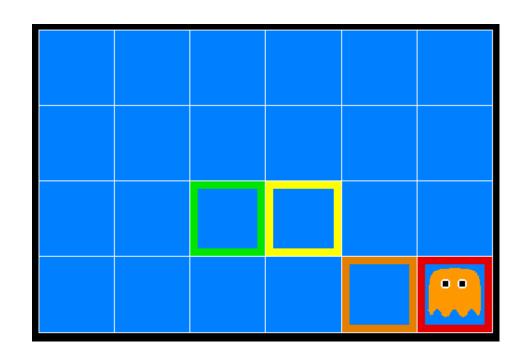
Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!



Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green



Sensors are noisy, but we know P(Color | Distance)

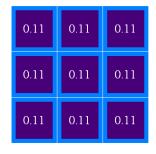
P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

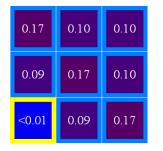
[Demo: Ghostbuster – no probability (L12D1)]

Uncertainty

General situation:

- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

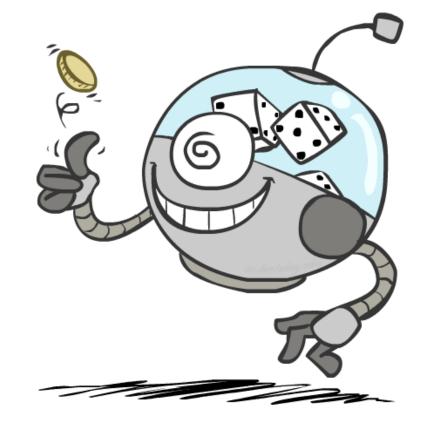






Random Variables

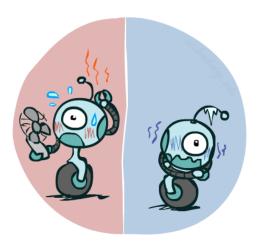
- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

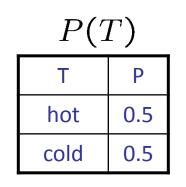


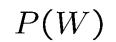
Probability Distributions

- Associate a probability with each value
 - Temperature:

• Weather:



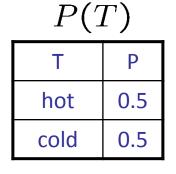


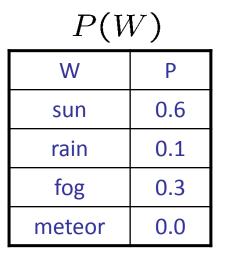


W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

Unobserved random variables have distributions





- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

P(W = rain) = 0.1

Must have:

$$\forall x \ P(X = x) \ge 0$$
 and

$$\sum_{x} P(X = x) = 1$$

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$

....

Shorthand notation:

OK *if* all domain entries are unique

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

• Must obey: $P(x_1, x_2, \dots x_n) \geq 0$

$$\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$$

\boldsymbol{D}	(Т	7	W)
1		,	VV)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models

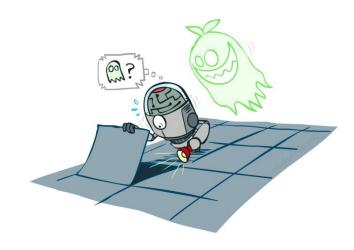
- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called *outcomes*
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

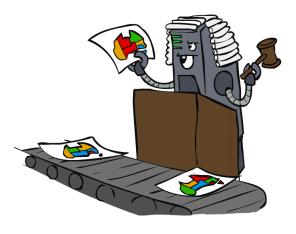
-		
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Distribution over T,W

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т



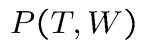


Events

• An *event* is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

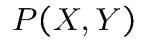
- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 0.4
 - Probability that it's hot?
 0.4 + 0.1 = 0.5
 - Probability that it's hot OR sunny?
 0.4 + 0.1 + 0.2 = 0.7
- Typically, the events we care about are partial assignments, like P(T=hot)



Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

P(+x, +y) ?
0.2



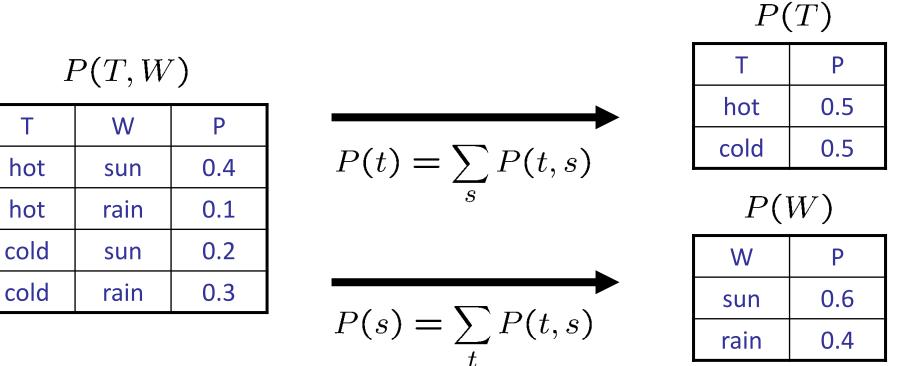
Х	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+у	0.4
-X	-у	0.1

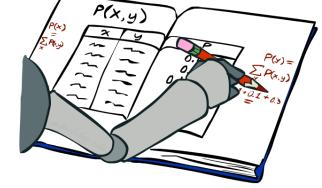
P(+x) ?
0.2 + 0.3 = 0.5

P(-y OR +x) ?
0.2 + 0.3 + 0.1 = 0.6

Marginal Distributions

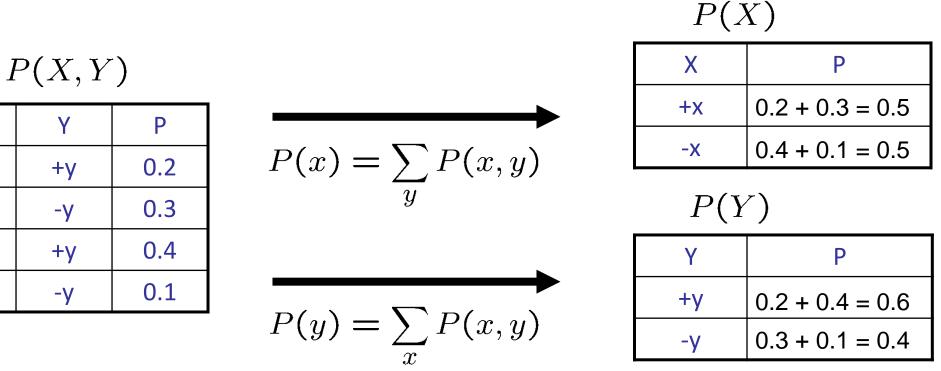
- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

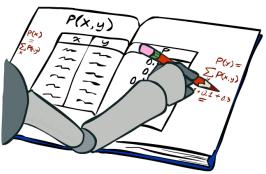




$P(X_1 = x_1) =$	$\sum P(X_1 = x_1, X_2 = x_2)$
	x_2

Quiz: Marginal Distributions





Х

+X

+X

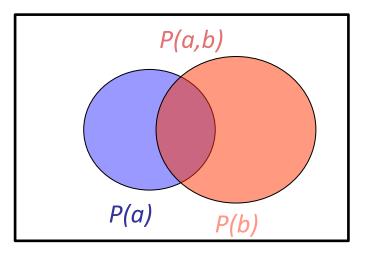
-X

-X

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability
 - P(a|b) = "probability of a happening given b happened"

$$P(a|b) = \frac{P(a,b)}{P(b)}$$



P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$
$$= P(W = s, T = c) + P(W = r, T = c)$$
$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

•
$$P(+x | +y)$$
? $\frac{P(+x, +y)}{P(+y)} = \frac{0.2}{0.2 + 0.4} = \frac{1}{3}$

P((X,	Y)
		-

X	Y	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-X	-у	0.1

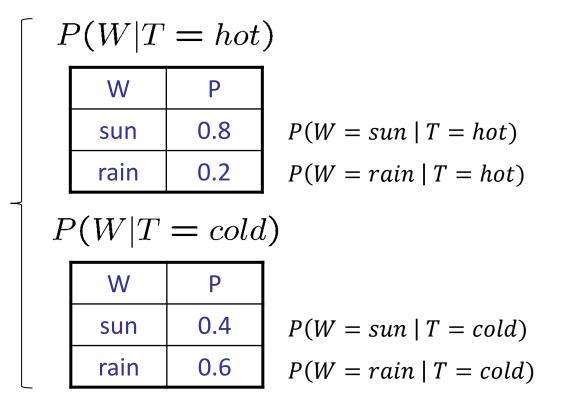
•
$$P(-x | +y)$$
? $\frac{P(-x, +y)}{P(+y)} = \frac{0.4}{0.2 + 0.4} = \frac{2}{3}$
• $P(-y | +x)$? $\frac{P(-y, +x)}{P(+x)} = \frac{0.3}{0.2 + 0.3} = \frac{3}{5}$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T)



Joint Distribution

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

0.2 + 0.3

Going from a joint distribution to a conditional distribution

P(T,W)

W

sun

rain

sun

rain

Т

hot

hot

cold

cold

Ρ

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W|T = c)$$

$$\frac{W \quad P}{sun \quad 0.4}$$

$$rain \quad 0.6$$

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

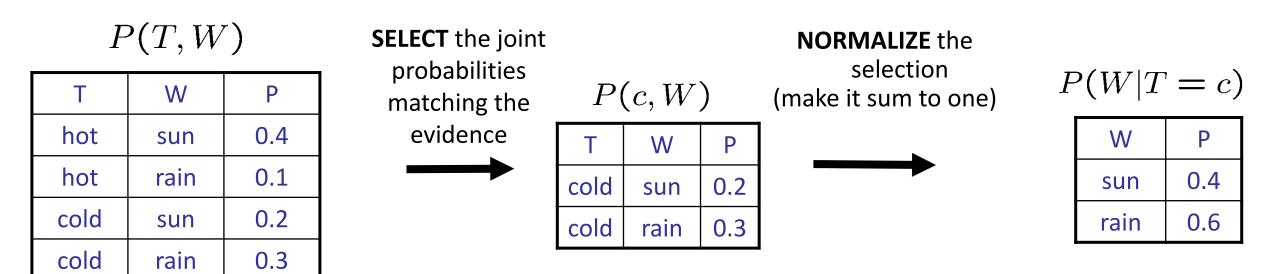
$$= \frac{0.3}{0.3 + 0.6}$$

Normalization Trick

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

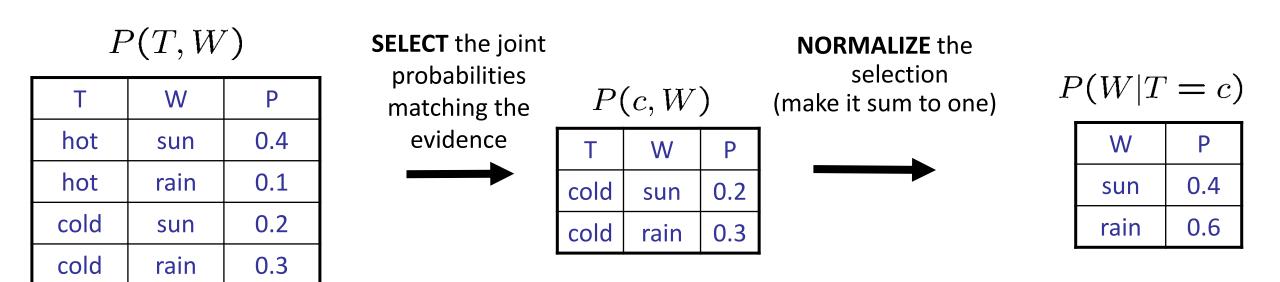
=
$$\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

=
$$\frac{0.2}{0.2 + 0.3} = 0.4$$



$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick

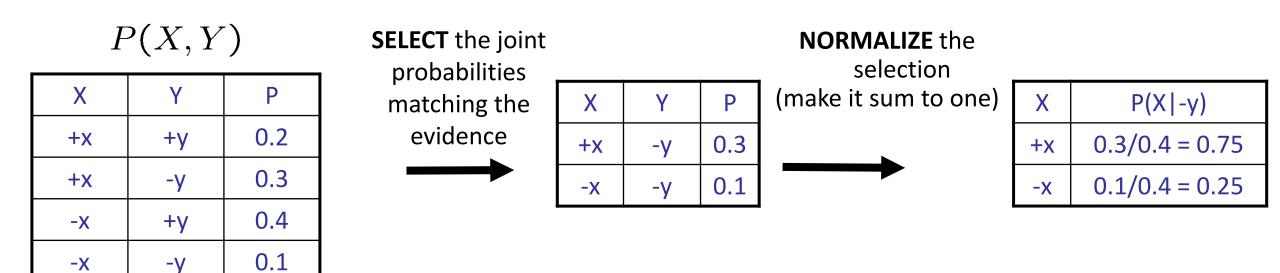


Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

P(X | Y=-y) ?



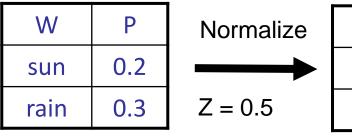
To Normalize

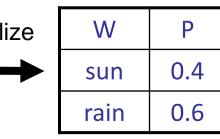
(Dictionary) To bring or restore to a normal condition

Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

Example 1

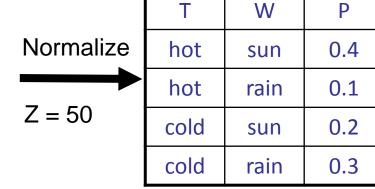




Example 2

Т	W	Р
hot	sun	20
hot	rain	5
cold	sun	10
cold	rain	15

All entries sum to ONE



Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
- $\begin{bmatrix} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{bmatrix} X_1, X_2, \dots X_n$ All variables

 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$

We want:

* Works fine with multiple query variables, too

 $P(Q|e_1\ldots e_k)$

 Step 1: Select the entries consistent with the evidence

-3

- 1

5

 \otimes

Pa

0.05

0.25

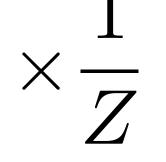
0.2

0.01

0.07

0.15

Step 3: Normalize



 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$

Inference by Enumeration

				C	—	14/	D
	W	P(W)		S	Т	W	Р
E = {}, H = {S, T}	sun	0.30 + 0.10 + 0.10 + 0.15 = 0.65		summer	hot	sun	0.30
. – (), 11 – (3, 1)	rain	0.05 + 0.05 + 0.05 + 0.20 = 0.35		summer	hot	rain	0.05
	Talli	0.03 + 0.03 + 0.03 + 0.20 - 0.33	ſ	summer	cold	sun	0.10
vinter)?			F	summer	cold	rain	0.05
= {S}, H = {T}	W	P(W winter)	F	winter	hot	sun	0.10
	sun	(0.10 + 0.15) / 0.50 = 0.50	┢	winter	hot	rain	0.05
	rain	(0.05 + 0.20) / 0.50 = 0.50	┢	winter	cold	sun	0.15
				witter	COIU	Sull	0.15
vinter, hot)?				winter	cold	rain	0.20
	\٨/	P(W winter hot)					

P(W)?

Q = {W}, E

P(W | w)

 $Q = \{W\}, E =$

P(W | w) $Q = \{W\}, E = \{S, T\}, H = \{\}$

W	P(W winter, hot)
sun	0.10 / 0.15 = 2/3
rain	0.05 / 0.15 = 1/3

Inference by Enumeration

Obvious problems:

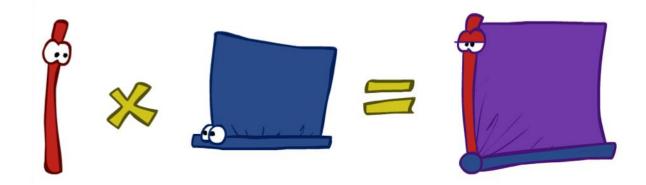
- Worst-case time complexity O(dⁿ)
- Space complexity O(dⁿ) to store the joint distribution

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$
 $(x|y) = \frac{P(x,y)}{P(y)}$

n/



The Product Rule

$$P(y)P(x|y) = P(x,y)$$

• Example:

Ρ

0.8

0.2

P(W)

R

sun

rain

P(D W)
D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

P(D,W)

The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

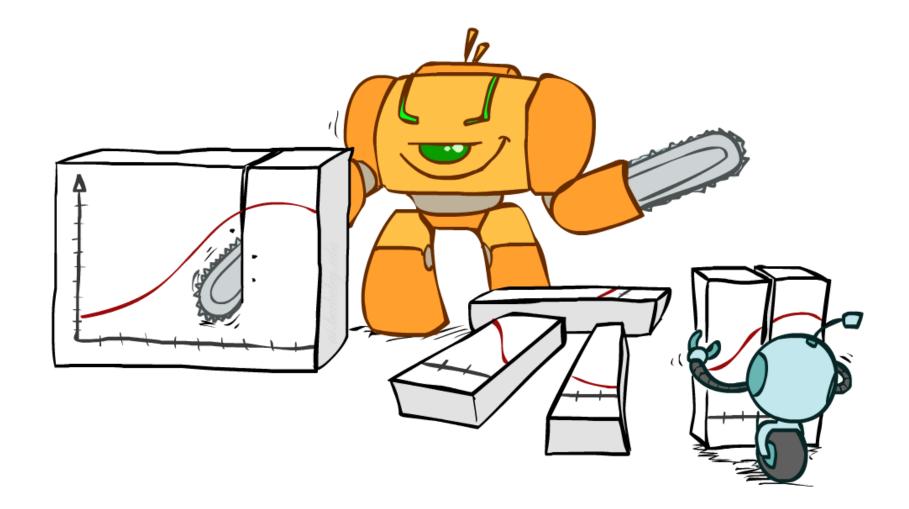
$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

Why is this always true?

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) = P(x_1)\frac{P(x_2, x_1)}{P(x_1)}\frac{P(x_3, x_1, x_2)}{P(x_1, x_2)}$$

Bayes Rule

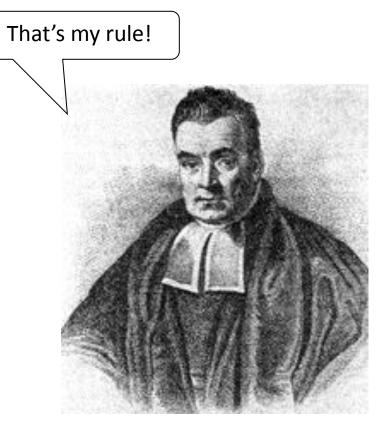


Bayes' Rule

- Two ways to factor a joint distribution over two variables:
 - P(x,y) = P(x|y)P(y) = P(y|x)P(x)
- Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!



Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

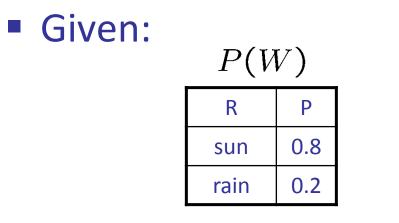
- Example:
 - M: meningitis, S: stiff neck

$$\begin{array}{c} P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01 \end{array} \end{array} \ \ \begin{array}{c} \mbox{Example} \\ \mbox{givens} \end{array} \ \ \end{array}$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small: 0.008
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule



P(D W)		
D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W | dry) ?

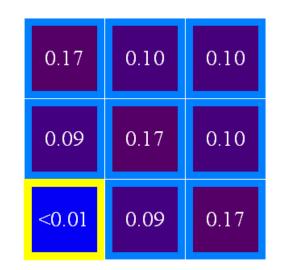
W	P(W dry)
sun	$P(sun dry) = \frac{P(dry sun)P(sun)}{P(dry)} = \frac{P(dry sun)P(sun)}{P(dry sun)P(sun) + P(dry rain)P(rain)} = \frac{0.9 * 0.8}{0.9 * 0.8 + 0.3 * 0.2} \approx 0.923$
rain	$P(rain dry) = \frac{P(dry rain)P(rain)}{P(dry)} = \frac{P(dry rain)P(rain)}{P(dry sun)P(sun) + P(dry rain)P(rain)} = \frac{0.3 * 0.2}{0.9 * 0.8 + 0.3 * 0.2} \approx 0.077$

Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

 $P(g|r) \propto P(r|g)P(g)$

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11



[Demo: Ghostbuster – with probability (L12D2)]

Independence

 $X \perp \!\!\!\perp Y$

• Two variables are *independent* in a joint distribution if:

P(X,Y) = P(X)P(Y) $\forall x, y P(x,y) = P(x)P(y)$

- Says the joint distribution *factors* into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a *modeling assumption*
 - Independence can be a simplifying assumption
 - *Empirical* joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity}?
- Independence is like something from CSPs: what?

Example: Independence?

P(T)		
Т	Р	
hot	0.4 + 0.1 = 0.5	
cold	0.2 + 0.3 = 0.5	

 $P_1(T,W)$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

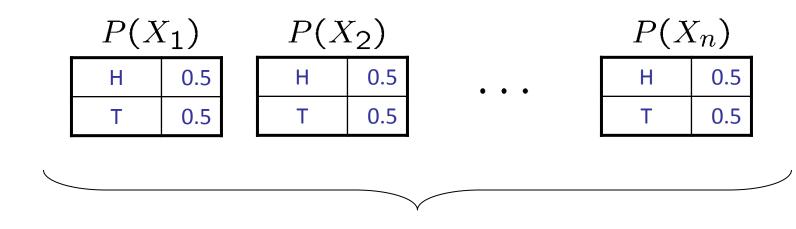
P(W)		
W	Р	
sun	0.4 + 0.2 = 0.6	
rain	0.1 + 0.3 = 0.4	

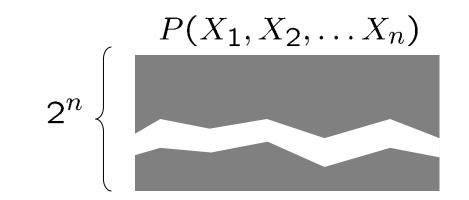
 $P_2(T,W) = P(T)P(W)$

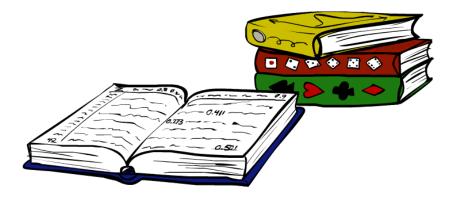
Т	W	Р
hot	sun	0.5 * 0.6 = 0.3
hot	rain	0.5 * 0.4 = 0.2
cold	sun	0.5 * 0.6 = 0.3
cold	rain	0.5 * 0.4 = 0.2

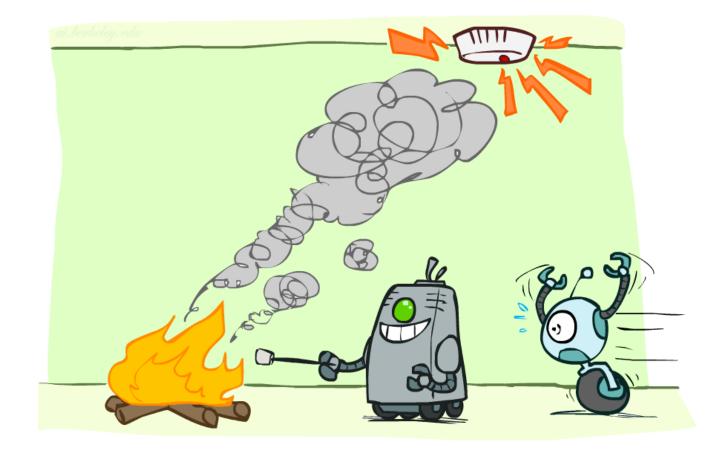
Example: Independence

N fair, independent coin flips:

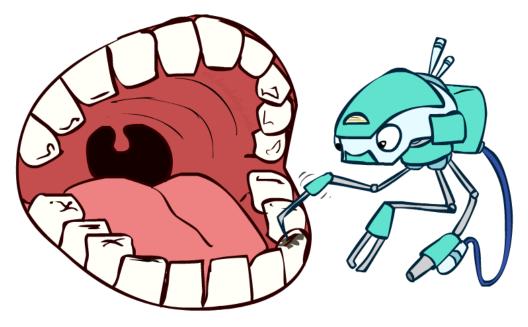








- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily



- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

if and only if:

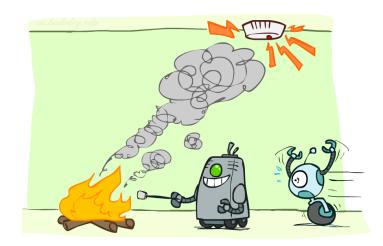
 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

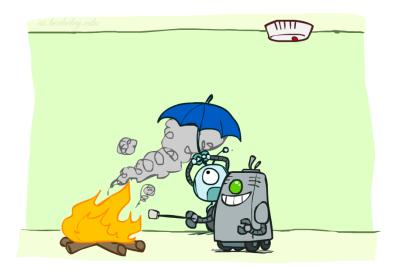
or, equivalently, if and only if

- What about this domain:
 - Traffic
 - Umbrella
 - Raining



- What about this domain:
 - Fire
 - Smoke
 - Alarm





Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$
- Trivial decomposition:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

Bayes'nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
 B: Bottom square is red
 G: Ghost is in the top

Givens:
 P(+g) = 0.5
 P(-g) = 0.5
 P(+t | +g) = 0.8
 P(+t | -g) = 0.4
 P(+b | +g) = 0.4
 P(+b | -g) = 0.8

0.50

P(T,B,G) = P(G) P(T | G) P(B | T, G)(assuming conditional independence) P(T,B,G) = P(G) P(T|G) P(B|G)

	Т	В	G	P(T,B,G)
	+t	+b	+g	0.16
	+t	+b	-b	0.16
	+t	-b	+g	0.24
	+t	-b	-00	0.04
	-t	+b	+g	0.04
	-t	+b	-bo	0.24
	-t	-b	+g	0.06
	-t	-b	-g	0.06

