Constraint Satisfaction Problems III

K-consistency, structure, iterative improvement

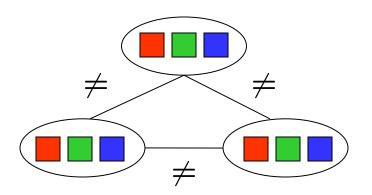
Reminder: CSPs

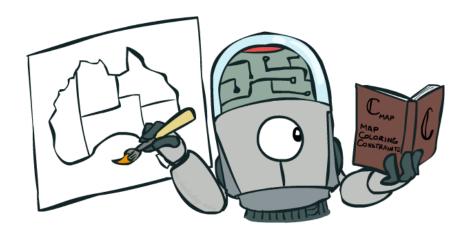
CSPs:

- Variables
- Domains
- Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a list of the legal tuples)
 - Unary / Binary / N-ary

Goals:

- Here: find any solution
- Also: find all, find best, etc.



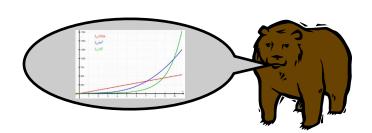


Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function RECURSIVE-BACKTRACKING (assignment, csp) returns soln/failure
  if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
  for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
           add \{var = value\} to assignment
           result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```

Improving Backtracking

- General-purpose ideas give huge gains in speed
 - ... but it's all still NP-hard

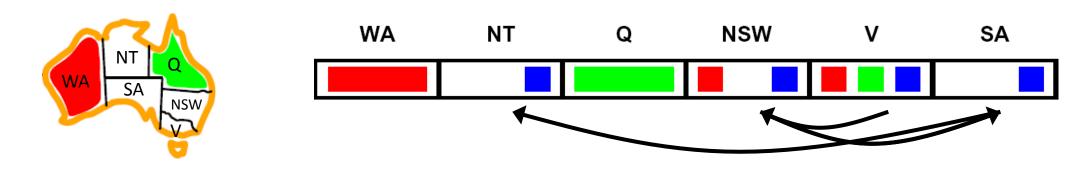


- Filtering: Can we detect inevitable failure early?
- Ordering:
 - Which variable should be assigned next? (MRV)
 - In what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?

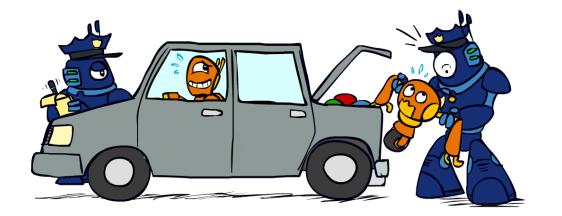
Arc Consistency of an Entire CSP

A simple form of propagation makes sure all arcs are simultaneously consistent:



- Arc consistency detects failure earlier than forward checking
 - But requires more work during search
- Important: If X loses a value, neighbors of X need to be rechecked!
- Must rerun after each assignment!

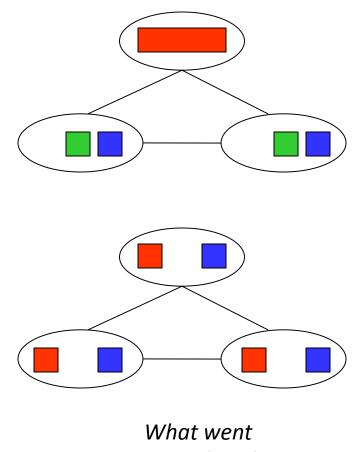
Remember: Delete from the tail!



Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Arc consistency still runs inside a backtracking search!



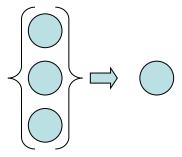
wrong here?

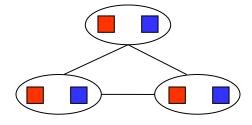
K-Consistency

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute
- (You need to know the k=2 case: arc consistency)

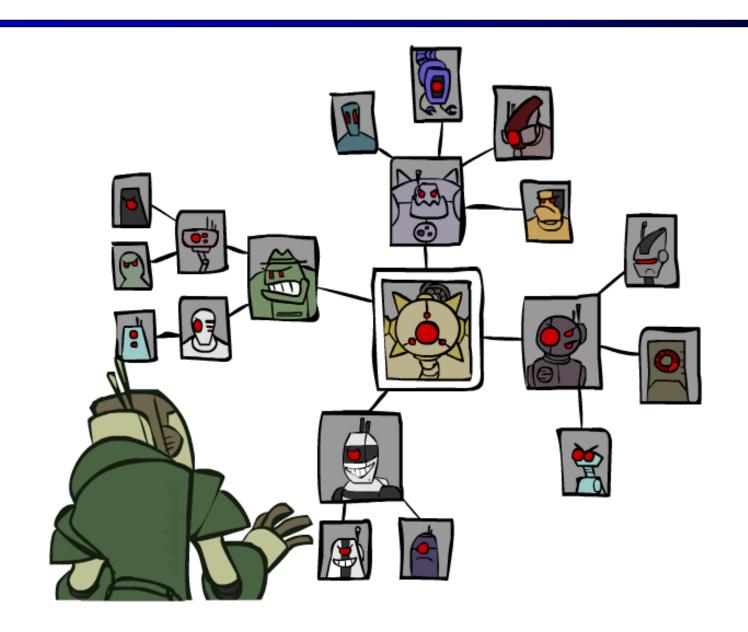




Strong K-Consistency

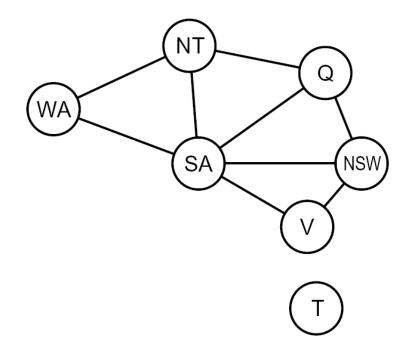
- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - **-** ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)

Structure

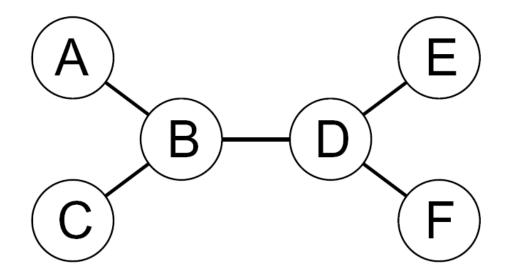


Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 2^{80} = 4 billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec



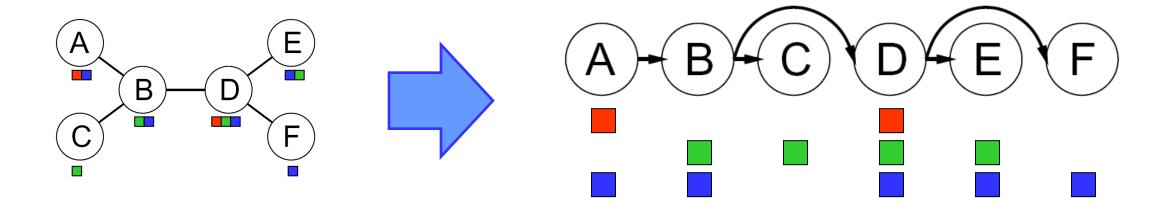
Tree-Structured CSPs



- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

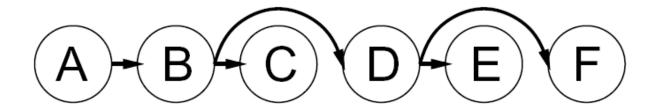
- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children



- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²) (why?)

Tree-Structured CSPs

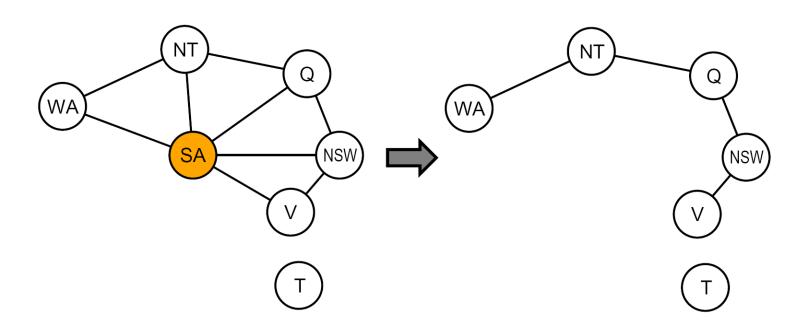
- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)



- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Improving Structure

Nearly Tree-Structured CSPs



- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((d^c) (n-c) d²), very fast for small c

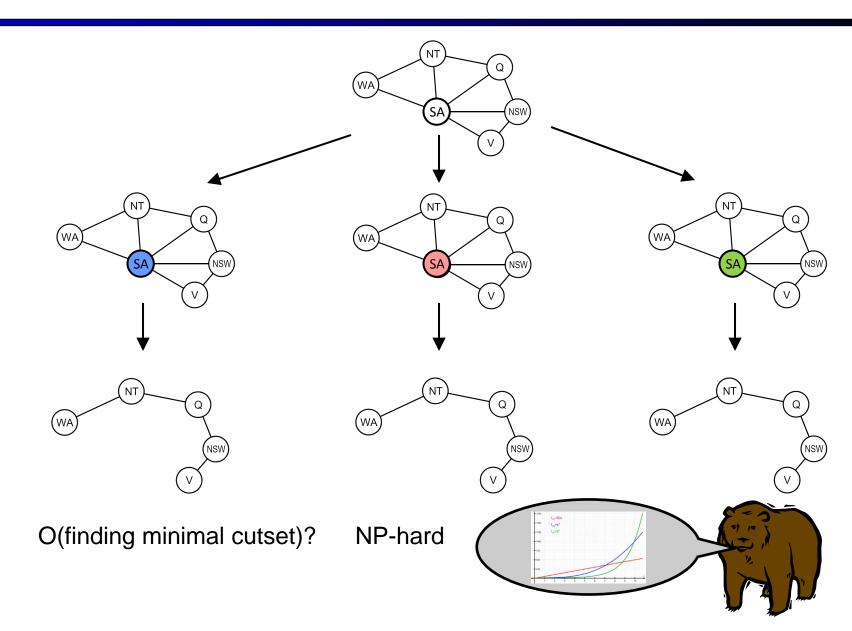
Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

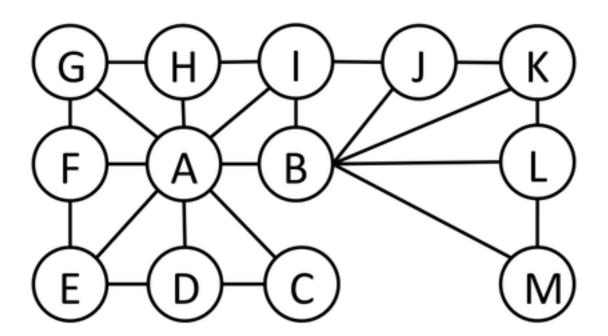
Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)



Cutset Quiz

Find the smallest cutset for the graph below.



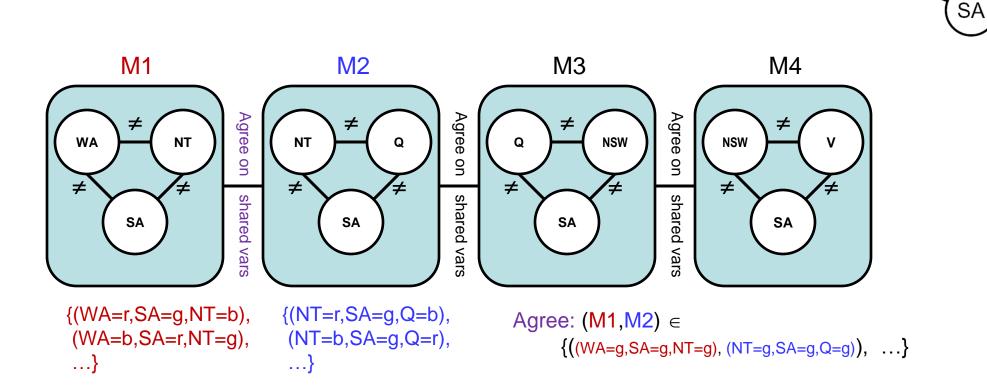
Tree Decomposition*

NT

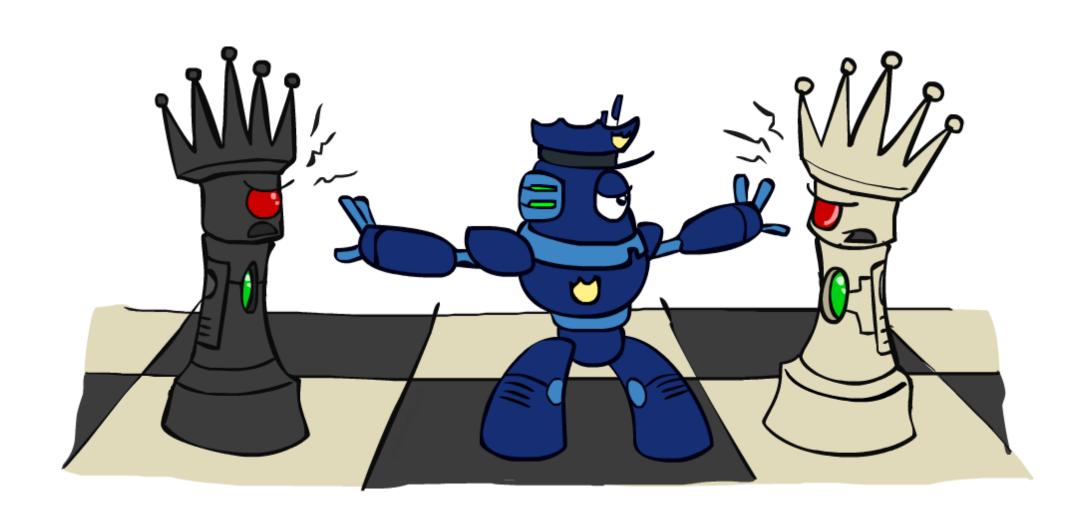
NSW

WA

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

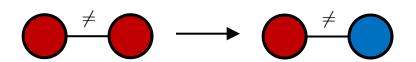


Iterative Improvement



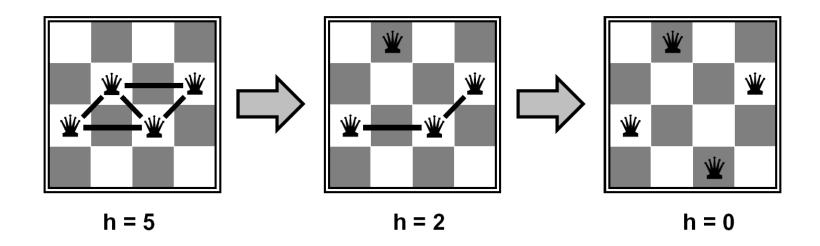
Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators reassign variable values
 - No fringe! Live on the edge.



- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens



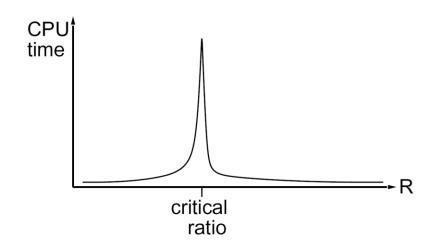
- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

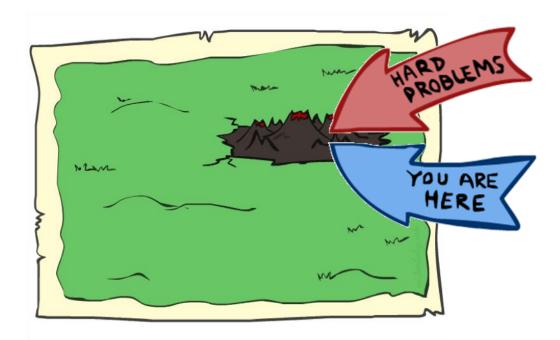
[Demo: n-queens – iterative improvement (L5D1)] [Demo: coloring – iterative improvement]

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$



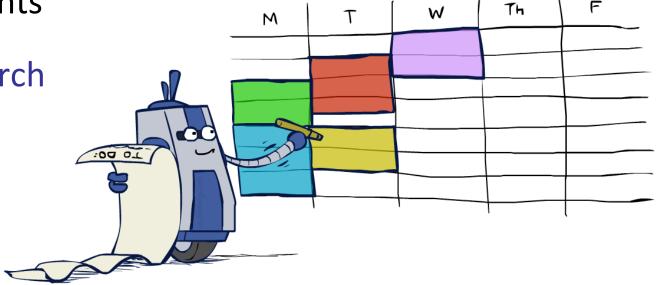


Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints

Basic solution: backtracking search

- Speed-ups:
 - Ordering
 - Filtering
 - Structure



Iterative min-conflicts is often effective in practice