
Constraint Satisfaction Problems II
Filtering, ordering

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Improving Backtracking

 General-purpose ideas give huge gains in speed

 Ordering:

 Which variable should be assigned next?

 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?

 Structure: Can we exploit the problem structure?

Filtering

 Filtering: Keep track of domains for unassigned variables and cross off bad options

 Forward checking: Cross off values that violate a constraint when added to the existing
assignment

Forward Checking

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

 Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
 Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V

Consistency of A Single Arc

 An arc X Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

 Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V

Arc Consistency of an Entire CSP

 A simple form of propagation makes sure all arcs are consistent:

 Important: If X loses a value, neighbors of X need to be rechecked!
 Arc consistency detects failure earlier than forward checking
 Can be run as a preprocessor or after each assignment
 What’s the downside of enforcing arc consistency?

Remember:
Delete from

the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

 After enforcing arc
consistency:

 Can have one solution left

 Can have multiple solutions left

 Can have no solutions left (and
not know it)

 Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- arc consistency]

[Demo: coloring -- forward checking]

Ordering

Ordering: Minimum Remaining Values

 Variable Ordering: Minimum remaining values (MRV):

 Choose the variable with the fewest legal left values in its domain

 Why min rather than max?

 Also called “most constrained variable”

 “Fail-fast” ordering

Ordering: Least Constraining Value

 Value Ordering: Least Constraining Value
 Given a choice of variable, choose the least

constraining value

 I.e., the one that rules out the fewest values in
the remaining variables

 Note that it may take some computation to
determine this! (E.g., rerunning filtering)

 Why least rather than most?

 Combining these ordering ideas makes
 1000 queens feasible

