Constraint Satisfaction Problems

What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
- The path to the goal is the important thing
- Paths have various costs, depths
- Heuristics give problem-specific guidance

- Identification: assignments to variables
- The goal itself is important, not the path
- All paths at the same depth (for some formulations)
- CSPs are specialized for identification problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

- Standard search problems:
- State is a "black box": arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything
- Constraint satisfaction problems (CSPs):
- A special subset of search problems
- State is defined by variables X_{i} with values from a
 domain \boldsymbol{D} (sometimes \boldsymbol{D} depends on \boldsymbol{i})
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

CSP Examples

Tasmania

Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D=\{r e d$, green, blue $\}$
- Constraints: adjacent regions must have different colors

Example: N -Queens

- Formulation 1:

- Variables: $X_{i j}$ ($\mathrm{i}=$ row, $\mathrm{j}=$ column $)$
- Domains: $\{0,1\}$
- Constraints

$\forall i, j, k\left(X_{i j}, X_{i k}\right) \in\{(0,0),(0,1),(1,0)\}$ (Same row, different columns)
$\forall i, j, k \quad\left(X_{i j}, X_{k j}\right) \in\{(0,0),(0,1),(1,0)\} \quad$ (Different row, same column)
$\forall i, j, k\left(X_{i j}, X_{i+k, j+k}\right) \in\{(0,0),(0,1),(1,0)\} \quad$ (Diagonal, down and right)
$\forall i, j, k\left(X_{i j}, X_{i+k, j-k}\right) \in\{(0,0),(0,1),(1,0)\} \quad$ (Diagonal, down and left)
$\sum_{i, j} X_{i j}=N \quad(\mathrm{~N}$ queens on the board $)$

Example: N -Queens

- Formulation 2 :
- Variables: Q_{k} (where queen is in row k)
- Domains: $\{1,2,3, \ldots N\}$

- Constraints:

Implicit: $\quad \forall i, j$ non-threatening $\left(Q_{i}, Q_{j}\right)$

Explicit:

$$
\left(Q_{1}, Q_{2}\right) \in\{(1,3),(1,4), \ldots\}
$$

Constraint Graphs

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables:

$$
F T U W R O X_{1} X_{2} X_{3}
$$

- Domains:

$$
\{0,1,2,3,4,5,6,7,8,9\}
$$

- Constraints:
alldiff($F, T, U, W, R, O)$
$O+O=R+10 \cdot X_{1}$

Example: Sudoku

- Variables:
- Each (open) square
- Domains:
- $\{1,2, \ldots, 9\}$
- Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region
(or can have a bunch of pairwise inequality constraints)

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP

- Approach:
- Each intersection is a variable
- Adjacent intersections impose constraints on each other
- Solutions are physically realizable 3D interpretations

Varieties of CSPs and Constraints

Varieties of CSPs

- Discrete Variables
- Finite domains
- Size d means $\mathrm{O}\left(d^{n}\right)$ complete assignments
- E.g., Boolean CSPs, including Boolean satisfiability (NPcomplete)
- Infinite domains (integers, strings, etc.)
- E.g., job scheduling, variables are start/end times for each job

- Linear constraints solvable, nonlinear undecidable
- Continuous variables
- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

- Varieties of Constraints
- Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

$$
S A \neq \text { green }
$$

- Binary constraints involve pairs of variables, e.g.:

$$
S A \neq W A
$$

- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
- E.g., red is better than green
- Often representable by a cost for each variable assignment
- Gives constrained optimization problems
- (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

- Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
- Initial state: the empty assignment, \{\}
- Successor function: assign a value to an unassigned variable
- Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Search Methods

- What would BFS do?
- What would DFS do?
- What problems does naïve search have?

Backtracking Search

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
- Variable assignments are commutative, so fix ordering
- I.e., [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
- I.e. consider only values which do not conflict previous assignments
- Might have to do some computation to check the constraint
- "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search (not the best name)
- Can solve n -queens for $\mathrm{n} \approx 25$

Backtracking Example

Backtracking Search

```
function BACKTRACKING-SEARCH(csp) returns solution/failure
    return Recursive-Backtracking({ },csp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
    if assignment is complete then return assignment
    var\leftarrowSELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
    for each value in ORDER-DOMAIN-VALUES(var, assignment,csp) do
        if value is consistent with assignment given Constraints[csp] then
            add {var = value} to assignment
            result }\leftarrow\mathrm{ RECURSIVE-BACKTRACKING(assignment,csp)
            if result }\not=\mathrm{ failure then return result
            remove {var = value} from assignment
return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

Next time: Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
- Which variable should be assigned next?
- In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?

- Structure: Can we exploit the problem structure?

