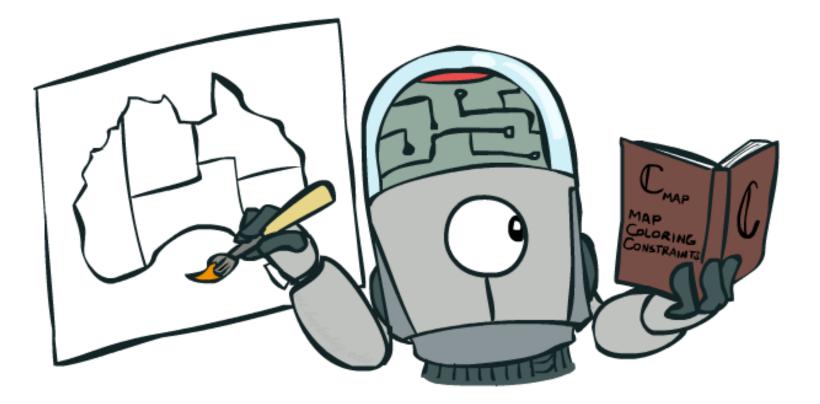
Constraint Satisfaction Problems

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

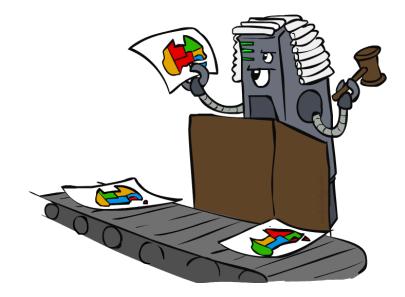
Constraint Satisfaction Problems

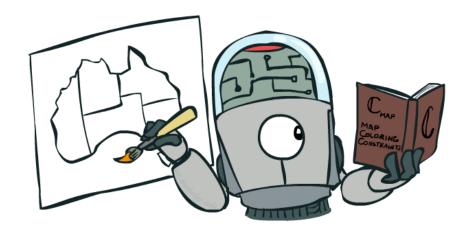


Constraint Satisfaction Problems

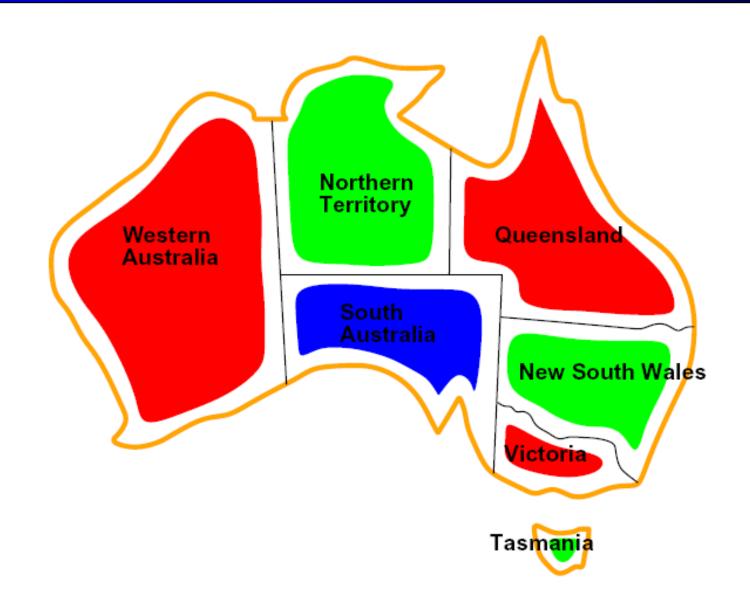
Standard search problems:

- State is a "black box": arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a *formal representation language*
- Allows useful general-purpose algorithms with more power than standard search algorithms





CSP Examples



Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D = {red, green, blue}
- Constraints: adjacent regions must have different colors

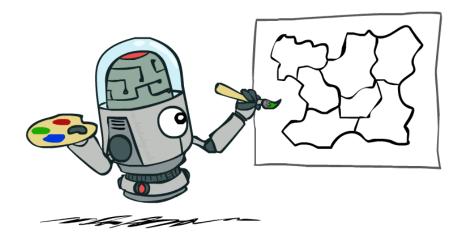
Implicit: WA \neq NT

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

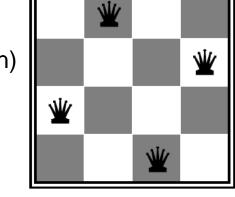
{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

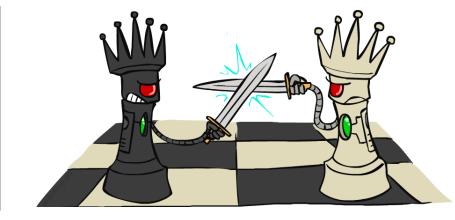




Example: N-Queens

- Formulation 1:
 - Variables: X_{ij} (i = row, j = column)
 - Domains: {0,1}
 - Constraints



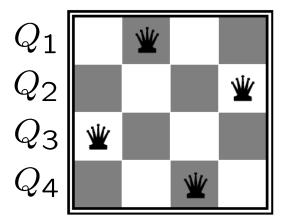


 $\begin{aligned} &\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \ (\text{Same row, different columns}) \\ &\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \ (\text{Different row, same column}) \\ &\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \ (\text{Diagonal, down and right}) \\ &\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \ (\text{Diagonal, down and left}) \end{aligned}$

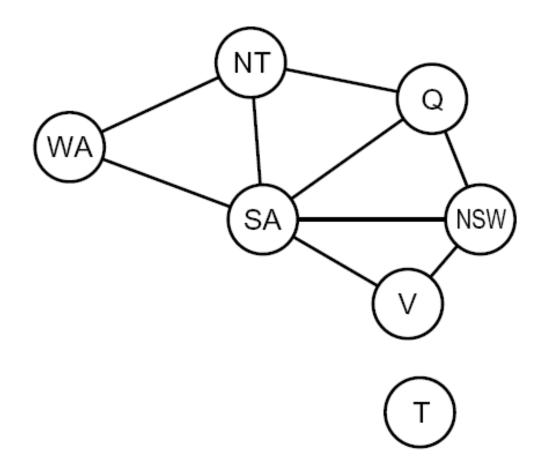
 $\sum_{i,j} X_{ij} = N \qquad \text{(N queens on the board)}$

Example: N-Queens

- Formulation 2:
 - Variables: Q_k (where queen is in row k)
 - Domains: $\{1, 2, 3, \dots N\}$
 - Constraints:
 - Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

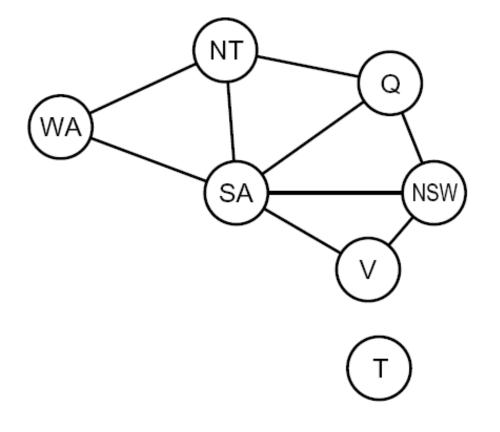


Constraint Graphs



Constraint Graphs

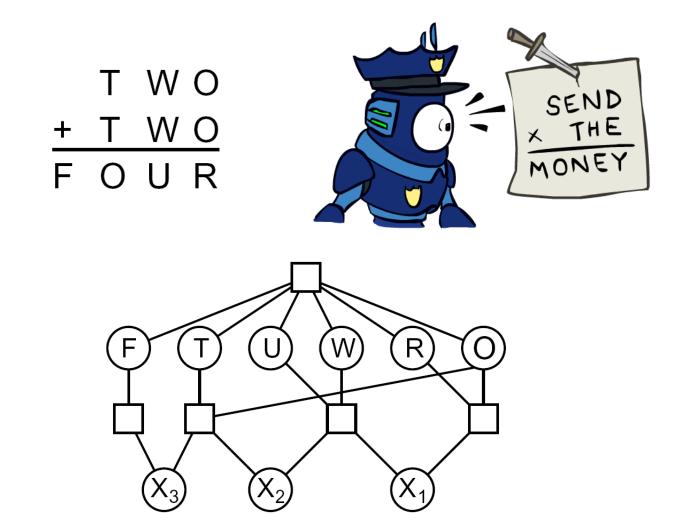
- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!



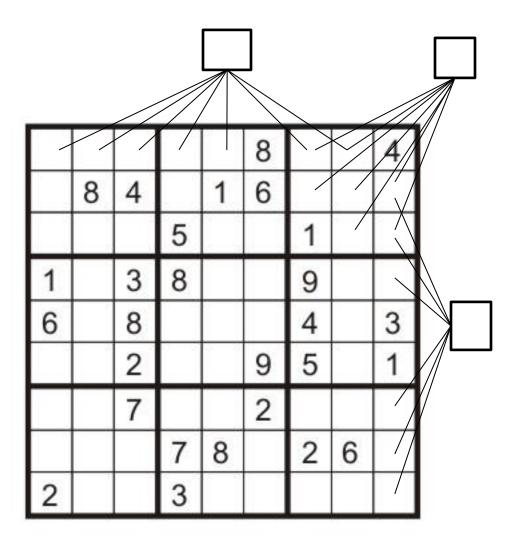
Example: Cryptarithmetic

- Variables:
 - $F T U W R O X_1 X_2 X_3$
- Domains:
 - $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Constraints:
 - $\operatorname{alldiff}(F, T, U, W, R, O)$
 - $O + O = R + 10 \cdot X_1$

• • •



Example: Sudoku



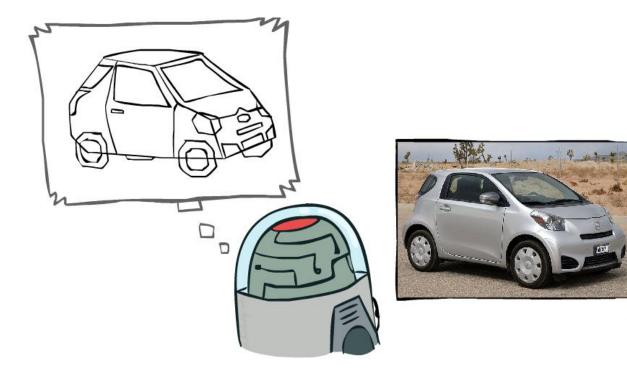
- Variables:
 - Each (open) square
- Domains:
 - {1,2,...,9}
- Constraints:

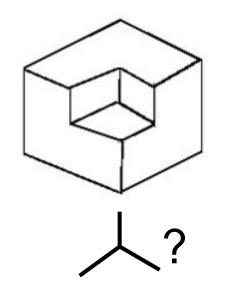
9-way alldiff for each column9-way alldiff for each row9-way alldiff for each region(or can have a bunch of

pairwise inequality constraints)

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP





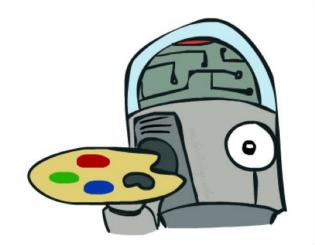
Approach:

- Each intersection is a variable
- Adjacent intersections impose constraints on each other
- Solutions are physically realizable 3D interpretations

Varieties of CSPs and Constraints

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size *d* means O(*dⁿ*) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NPcomplete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable
- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods



Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

 $SA \neq green$

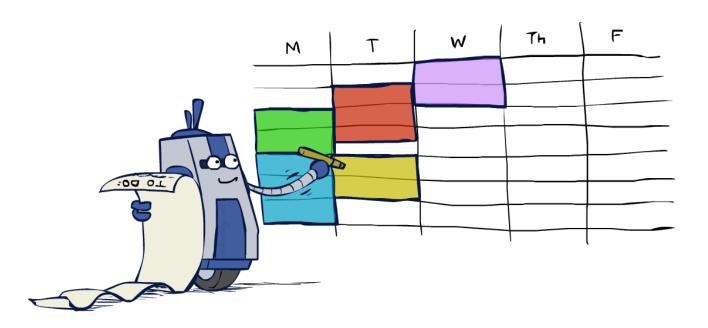
Binary constraints involve pairs of variables, e.g.:

 $SA \neq WA$

- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- Interpretended in the second secon

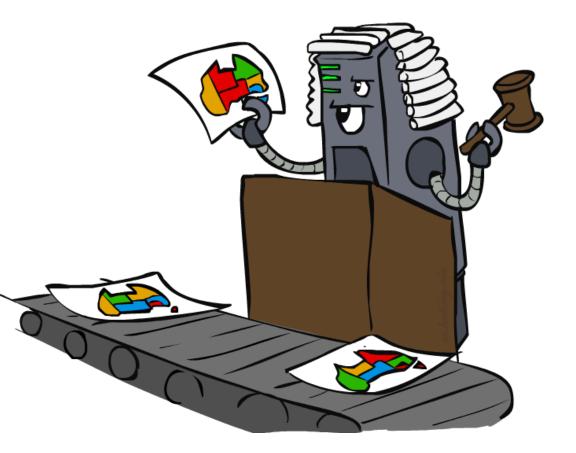


Many real-world problems involve real-valued variables...

Solving CSPs

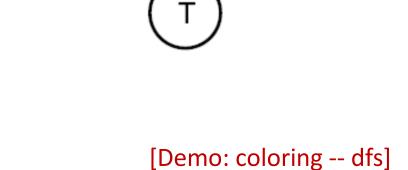
Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

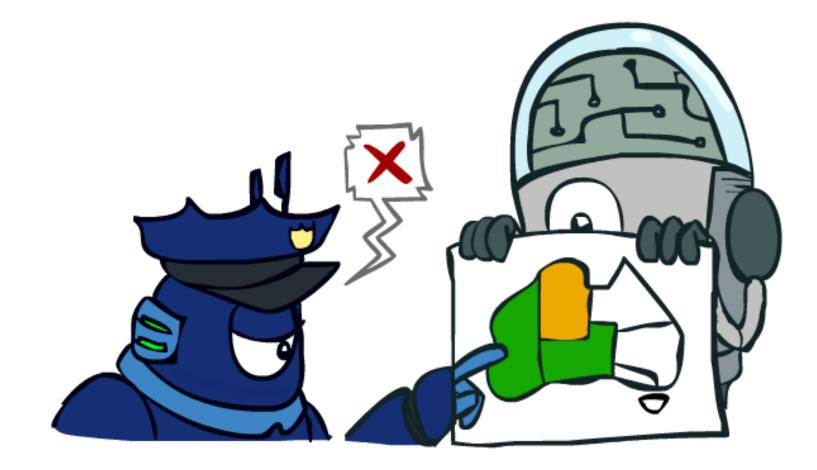


Search Methods

- What would BFS do? NT Q WA SA NSW What would DFS do?
 - What problems does naïve search have?

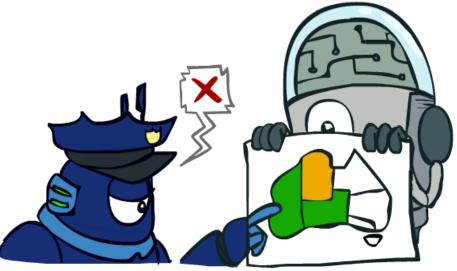


Backtracking Search

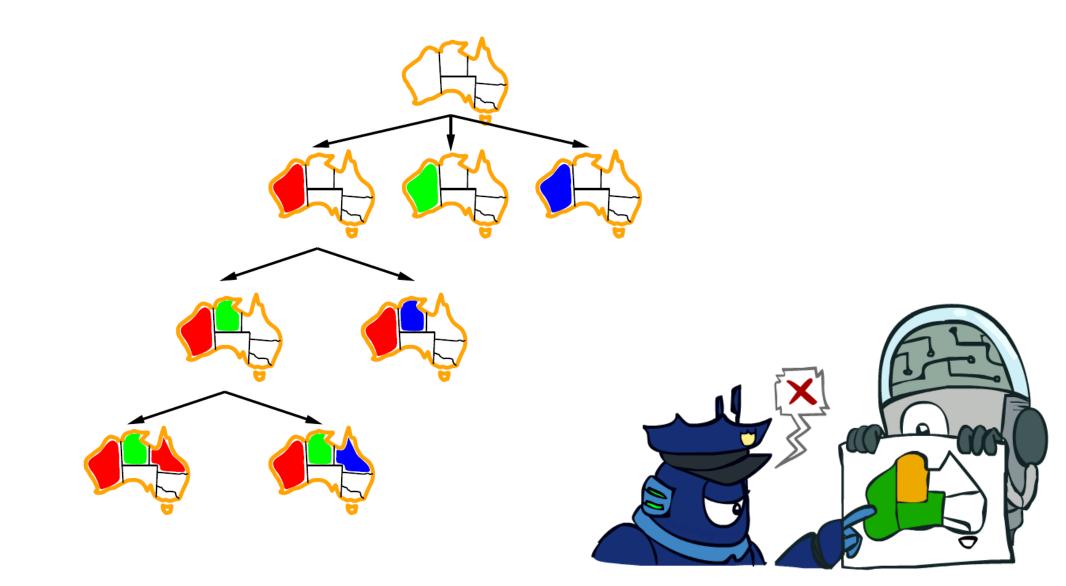


Backtracking Search

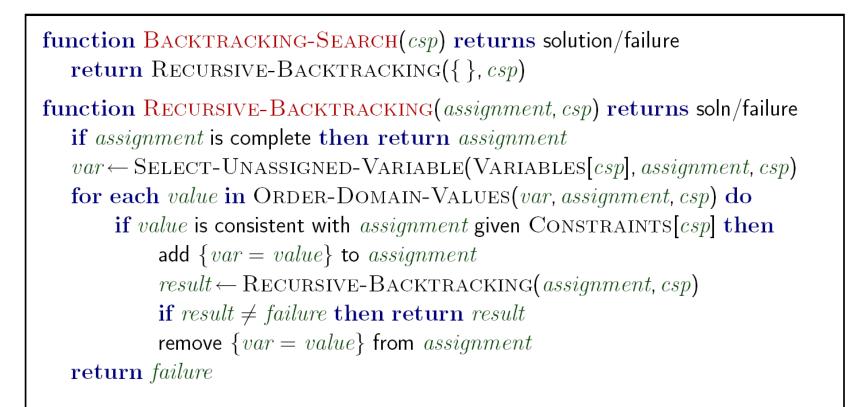
- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraint
 - "Incremental goal test"
- Depth-first search with these two improvements is called *backtracking search* (not the best name)
- Can solve n-queens for $n \approx 25$



Backtracking Example



Backtracking Search

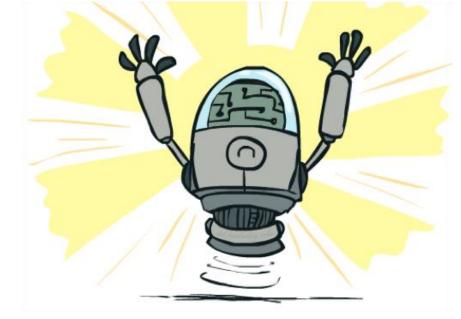


- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

[Demo: coloring -- backtracking]

Next time: Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?



Structure: Can we exploit the problem structure?