
Survivor: CSCI 135

Variables and data types

• Variables

– Stores information your program needs

– Each has a unique name

– Each has a specific type

Java built-in type what it stores example values operations

String sequence of
characters

"Hello world!"
"I love this!"

concatenate

char characters 'a', 'b', '!' compare

int integer values 42
1234

add, subtract, multiply,
divide, remainder

double floating-point
values

9.95
3.0e8

add, subtract, multiply,
divide

boolean truth values true
false

and, or, not

2

Some definitions

int a;

a = 10;

int b;

b = 7;

int c = a + b;

Declaration statement
“I'm going to need an integer and let's call it a”
NOTE: in Java you are required to declare a variable before using it!

Variable name
“Whenever I say a, I mean the value stored in a”

Literal
“I want the value 10”

Assignment statement
“Variable b gets the literal value 7”

Combined declaration and assignment
“Make me an integer variable called c and assign it
the value obtained by adding together a and b”

= in CS
is not the same as

= in math!

3

Text

• String data type

– A sequence of characters

– Double quote around the characters

– Concatenation using the + operator

String firstName = "Keith";
String lastName = "Vertanen";
String fullName = firstName + " " + lastName;
String favNumber = "42";

System.out.println(fullName +
 "'s favorite number is " +
 favNumber);

Keith Vertanen's favorite number is 42

4

Characters

5

• char data type

– Holds a single character

– Single apostrophe, e.g. 'a', 'z'

public class CharExample
{
 public static void main(String [] args)
 {
 char ch1 = 'y';
 char ch2 = 'o';
 String result = "" + ch1;

 result = result + ch2;
 result = result + ch2;
 result = result + ch2;

 System.out.println(result);
 }
}

% java CharExample
yooo

Double quotes with nothing
in between, an empty String

Integers

• int data type

– An integer value between -231 and +231-1

• Between -2,147,483,648 and 2,147,483,647

– Operations:

add subtract multiply divide remainder

+ - * / %

example result comment

10 + 7 17

10 - 7 3

10 * 7 70

10 / 7 1 integer division, no fractional part

10 % 7 3 remainder after dividing by 7

10 / 0 runtime error, you can't divide an integer by 0!

Watch out for this!
/ is integer division if

both sides are integers!

6

Integers

• int data type

– Normal rules of mathematical precedence

• e.g. multiplication/division before addition/subtraction

– Use ()'s to force a different order of calculation

example result comment

10 + 7 * 2 24 multiplication comes before addition

(10 + 7) * 2 34 ()'s force addition to occur first

10 / 7 + 2 3 integer division result is 1 which is added to 2

10 - 7 - 2 1

(10 - 7) - 2 1

10 - (7 - 2) 5

7

Floating-point numbers

• double data type

– Floating-point number (as specified by IEEE 754)

– Operations:

add subtract multiply divide

+ - * /

example result

9.95 + 2.99 12.94

1.0 - 2.0 -1.0

1.0 / 2.0 0.5

1.0 / 3.0 0.3333333333333333

1.0 / 0.0 Infinity

0.0 / 123.45 0.0

0.0 / 0.0 NaN

8

Booleans

9

• boolean data type

– Either true or false

– Controls logic and flow of control
in programs

– Operations:

logical AND logical OR logical NOT

&& || !

Note: two symbols for logical
AND and OR, not one!

Booleans

10

• boolean data type

a !a

true false

false true

logical AND logical OR logical NOT

&& || !

a b a && b a || b

false false false false

false true false true

true false false true

true true true true

!a → “Is a set to false?”
a && b → “Are both a and b set to true?”
a || b → “Is either a or b (or both) set to true?”

Comparisons

11

• Given two numbers → return a boolean

operator meaning true example false example

== equal 7 == 7 7 == 8

!= not equal 7 != 8 7 != 7

< less than 7 < 8 8 < 7

<= less than or equal 7 <= 7 8 <= 7

> greater than 8 > 7 7 > 8

>= greater than or equal 8 >= 2 8 >= 10

Is the sum of a, b and c equal to 0? (a + b + c) == 0
Is grade in the B range? (grade >= 80.0) && (grade < 90.0)
Is sumItems an even number? (sumItems % 2) == 0

Type conversion

• Java is strongly typed

– Helps protect you from mistakes (aka "bugs")

public class TypeExample0
{
 public static void main(String [] args)
 {
 int orderTotal = 0;
 double costItem = 29.95;

 orderTotal = costItem * 1.06;
 System.out.println("total=" + orderTotal);
 }
} % javac TypeExample0.java

TypeExample0.java:7: possible loss of precision
found : double
required: int
 orderTotal = costItem * 1.06;
 ^

12

Type conversion

• Converting from one type to another:

– Manually → using a cast

• A cast is accomplished by putting a type inside ()'s

– Casting to int drops fractional part

• Does not round!

public class TypeExample1
{
 public static void main(String [] args)
 {
 int orderTotal = 0;
 double costItem = 29.95;

 orderTotal = (int) (costItem * 1.06);

 System.out.println("total=" + orderTotal);
 }
}

% java TypeExample1
total=31

13

Type conversion

• Automatic conversion

– Numeric types:

• If no loss of precision → automatic promotion

public class TypeExample2
{
 public static void main(String [] args)
 {
 double orderTotal = 0.0;
 int costItem = 30;

 orderTotal = costItem * 1.06;

 System.out.println("total=" + orderTotal);
 }
} % java TypeExample2

total=31.8

14

Type conversion

• Automatic conversion

– String concatenation using the + operator
converts numeric types to also be a String

public class TypeExample3
{
 public static void main(String [] args)
 {
 double costItem = 29.95;

 String message = "The widget costs ";
 message = message + costItem;
 message = message + "!";

 System.out.println(message);
 }
} % java TypeExample3

The widget costs 29.95!

15

Converting text to a numeric type

16

method description

Integer.parseInt(String a) converts text a into an int

Double.parseDouble(String a) convert text a into a double

public class CostCalc
{
 public static void main(String [] args)
 {
 String product = args[0];
 int qty = Integer.parseInt(args[1]);
 double cost = Double.parseDouble(args[2]);

 double total = qty * cost;

 System.out.print("To buy " + qty);
 System.out.print(" " + product);
 System.out.println(" you will need $" + total);
 }
} % java CostCalc elections 2 1e6

To buy 2 elections you will need $2000000.0

Control flow

• Interesting and powerful programs need:

– To skip over some lines

– To repeat lines

• Conditionals → sometimes skip parts

• Loops → allow repetition of lines

17

if statement

• Most common branching statement

– Evaluate a boolean expression, inside the ()'s

– If true, do some stuff

– [optional] If false, do some other stuff

18

if (expression)
{
 statement1;
 statement2;
 …
}

if (expression)
{
 statement1;
 statement2;
 …
}
else
{
 statement3;
 statement4;
 …
}

Note lack of
semicolon!

Curly braces used to
denote a code "block":
All lines in block get
executed (in sequence) or
none of the them do

if statement

• {}'s optional if only one statement

• Example:

19

if (expression)
 statement1;

if (expression)
 statement1;
else
 statement2;

if (x > y)
 max = x;
else
 max = y;

x > y?

max = x; max = y;

yes no

if examples

20

if (x < 0)
 x = -x;

Take absolute value of x

if (Math.random() < 0.5)
 System.out.println("heads");
else
 System.out.println("tails");

Flip a fair coin and print out the results.

if (x > y)
{
 int t = x;
 x = y;
 y = t;
}

Put x and y into sorted order

num = 0;
if (args.length > 0)
{
 num = Integer.parseInt(args[0]);
}

If a command line option is passed in, use it as the
value for num.

Nested if

• Execute one of three options:
if (category == 0)
{
 title = "Books";
}
else
{
 if (category == 1)
 {
 title = "CDs";
 }
 else
 {
 title = "Misc";
 }
}

if (category == 0)
{
 title = "Books";
}
else if (category == 1)
{
 title = "CDs";
}
else
{
 title = "Misc";
}

==

– Both do exactly same thing

– Right probably more readable in general
21

Data Types & Conditionals

22

Write a Java program to convert a temperature in Fahrenheit to a temperature in
kelvin or vice versa. The conversion equation is:

𝑇𝑘 = [
5

9
𝑇𝑓 − 32.0] + 273.15

The user will input the temperature and its units on the command line
and you will convert it to the other unit. For example, if the user types:
 java <temppgm> 32 F
Your program should convert it to kelvin, and if the user types:
 java <temppgm> 32 K
Your program should convert it to Fahrenheit.

VERY IMPORTANT: Name your program <yourusername>1.java
For example, my program would be named mvandyne1.java

Data Types & Conditionals

23

VERY IMPORTANT: Name your program <yourusername>2.java
For example, my program would be named mvandyne2.java

The cost of sending a package by an express delivery service is $15.00 for the
first two pounds, and $5.00 for each pound or fraction thereof over two pounds.
If the package weighs more than 70 pounds, a $15.00 excess weight surcharge
is added to the cost. No package over 100 pounds will be accepted. Write a
Java program that accepts the weight of a package in pounds on the command
line and computes the cost of sending the package. Be sure to handle the case
of overweight packages.

For example, if the user types:
 java <weightpgm> 55
Your program should compute the cost of mailing a package weighing 55 pounds.

