
Problem Decomposition:
One Professor’s Approach to Coding

Fundamentals of Computer Science

zombie[0]

zombie[2]
zombie[5]

zombie[1]
zombie[3]

zombie[4]

Fewer Buuuuugs…

Overview

2

• Problem Solving

– Understand the
Problem

– Work out the Logic

– Convert it to Code

– We will walk through
a sample problem
and go through these
steps

The (Example) Problem

• You are a communications officer onboard an
E-3 Sentry AWACS surveillance aircraft. Your
radar equipment generates a file containing all
radar contacts within your region. Each radar
contact is given by its UTM coordinates. UTM
coordinates consist of two numbers, an
easting and a northing. The easting specifies
how many meters the contact is to the east of
a fixed grid reference location. Similarly the
northing is how far the contact is north of the
grid reference.

3

The (Example) Problem

In addition to the location of every aircraft, your
equipment also queries the transponder of all
aircraft to obtain their call sign. Only friendly
aircraft respond with a call sign. Other unknown
or hostile aircraft are assigned a question mark
as a call sign. Here is radar4.txt, a small example
file showing four contacts, two friendly and two
unknown:

 4

 34754 12029 EJ-475

 38002 11193 CX-120

 11899 28929 ?

 39222 10028 ? 4

The (Example) Problem

The first line of the example file specifies that
there are four contacts in the data file. Each of
the remaining lines gives the easting, northing
and call sign (in that order). You can assume all
eastings and northings are non-negative
integers.

5

The (Example) Problem
• Your job is to write a program RadarContacts.java that first

reports the number of friendly and non-friendly contacts in
the region. The program then generates a list of warning
messages for transmission to all friendly aircraft. The
messages inform each friendly aircraft about the distance to
any radar contacts that are too close. You program should take
two command-line arguments radius and mode. The radius
argument specifies how close (in kilometers) another contact
must be before a warning is generated. A warning should be
generated if the two-dimensional Euclidean distance between
the friendly aircraft in question and the contact is less than or
equal to radius kilometers. The radius argument can be any
non-negative floating-point value (e.g. 1.5).

6

The (Example) Problem

• The mode command-line argument specifies
the type of contacts that should be reported:

– mode 0, only non-friendly contacts are listed

– mode 1, only friendly contacts are listed

– mode 2, first non-friendly contacts are listed,
followed by friendly contacts

7

The (Example) Problem
• The output report format first lists the call sign of the

friendly aircraft followed by a colon. In mode 0 and
mode 2, all non-friendly that are too close are listed
(denoted by a question mark) followed by the
bogey's distance (in kilometers) in parentheses. In
mode 1, all friendly contacts are listed by their known
call sign followed by the friendly's distance in
parentheses. If a friendly contact does not have any
contacts that are too close (base on the mode), it
should not appear in the report. All distances should
be reported in kilometers rounded to two decimal
places. Contacts within the friendly and non-friendly
sets for a given aircraft's report can appear in any

order.
8

The (Example) Problem

• Here are some example runs:
 % java RadarContacts 1.0 2 < radar4.txt

 Friendly aircraft: 2

 Non-friendly aircraft: 2

 % java RadarContacts 2.0 2 < radar4.txt

 Friendly aircraft: 2

 Non-friendly aircraft: 2

 CX-120:

 ? (1.69)

9

The (Example) Problem

• Here are some (more) example runs:
 % java RadarContacts 3.5 2 < radar4.txt

 Friendly aircraft: 2

 Non-friendly aircraft: 2

 EJ-475:

 CX-120 (3.35)

 CX-120:

 ? (1.69)

 EJ-475 (3.35)

10

The (Example) Problem

• Here are some (more) example runs:
% java RadarContacts 3.5 1 < radar4.txt

 Friendly aircraft: 2

 Non-friendly aircraft: 2

 EJ-475:

 CX-120 (3.35)

 CX-120:

 EJ-475 (3.35)

 % java RadarContacts 3.5 0 < radar4.txt

 Friendly aircraft: 2

 Non-friendly aircraft: 2

 CX-120:

 ? (1.69)

11

Understanding the Problem

12

• You are a communications officer onboard an E-3 Sentry AWACS surveillance
aircraft. Your radar equipment generates a file containing all radar contacts within
your region. Each radar contact is given by its UTM coordinates. UTM coordinates
consist of two numbers, an easting and a northing. The easting specifies how many
meters the contact is to the east of a fixed grid reference location. Similarly the
northing is how far the contact is north of the grid reference.

OK – I know I have two numbers in here, an easting and a northing. They are
in meters, and they tell me how far east and north of a fixed point on a grid
something is…

easting (meters)

northing (meters)

Understanding the Problem

13

In addition to the location of every aircraft, your equipment also queries the
transponder of all aircraft to obtain their call sign. Only friendly aircraft respond with a
call sign. Other unknown or hostile aircraft are assigned a question mark as a call sign.
Here is radar4.txt, a small example file showing four contacts, two friendly and two
unknown:

 4

 34754 12029 EJ-475

 38002 11193 CX-120

 11899 28929 ?

 39222 10028 ?

The data I’m going to get is in a file. In addition to easting and northing
I have a call sign that looks like it’s a String data type. Friendlies will give
me a call sign, and unfriendlies are shown as “?”.

Understanding the Problem

14

The first line of the example file specifies that there are four contacts in the data file.
Each of the remaining lines gives the easting, northing and call sign (in that order). You
can assume all eastings and northings are non-negative integers.

OK, that first number in the file tells me how many contacts will be listed
in the file. And the easting and northing numbers will all be non-negative
integers.

Understanding the Problem

15

• Your job is to write a program RadarContacts.java that first reports the number of
friendly and non-friendly contacts in the region. The program then generates a list
of warning messages for transmission to all friendly aircraft. The messages inform
each friendly aircraft about the distance to any radar contacts that are too close.
You program should take two command-line arguments radius and mode. The
radius argument specifies how close (in kilometers) another contact must be
before a warning is generated. A warning should be generated if the two-
dimensional Euclidean distance between the friendly aircraft in question and the
contact is less than or equal to radius kilometers. The radius argument can be any
non-negative floating-point value (e.g. 1.5).

That’s a lot of stuff! Let’s sort it all out…
I have to report the number of friendlies and nonfriendlies. That means I’ll
 have to count them both.
I have to generate a list of warning messages to friendlies about contacts
 that are too close, using Euclidean distance.
I have to take in two command line arguments – one that tells me how close
 is too close, the radius. It will be in kilometers. And it will be a non-
 negative floating point number.
The other command line argument is something called a “mode”.

Understanding the Problem

16

• The mode command-line argument specifies the type of contacts that
should be reported:

– mode 0, only non-friendly contacts are listed

– mode 1, only friendly contacts are listed

– mode 2, first non-friendly contacts are listed, followed by friendly contacts

Ah, there’s where “mode” is explained. It’s either a 0, a 1, or a 2. And
it tells my program which “too-close” contacts are to be reported.

Understanding the Problem

17

• The output report format first lists the call sign of the friendly aircraft
followed by a colon. In mode 0 and mode 2, all non-friendly that are too
close are listed (denoted by a question mark) followed by the bogey's
distance (in kilometers) in parentheses. In mode 1, all friendly contacts are
listed by their known call sign followed by the friendly's distance in
parentheses. If a friendly contact does not have any contacts that are too
close (base on the mode), it should not appear in the report. All distances
should be reported in kilometers rounded to two decimal places. Contacts
within the friendly and non-friendly sets for a given aircraft's report can
appear in any order.

But wait! There’s more!
I have to output the call sign of the friendly aircraft followed by a colon.
Then if I’m in mode 0 or 2 I have to list the nonfriendlies by a “?”
 followed by their distance in parentheses.
If I’m in mode 1 I print the friendlies. I think that should really be mode 1
 or 2.
Only friendlies that have “too close” contacts should be output.
Distances should be in kilometers.
Distances should be rounded to two decimal places.

Understanding the Problem

18

• Here are some example runs:
 % java RadarContacts 1.0 2 < radar4.txt

 Friendly aircraft: 2

 Non-friendly aircraft: 2

 % java RadarContacts 2.0 2 < radar4.txt

 Friendly aircraft: 2

 Non-friendly aircraft: 2

 CX-120:

 ? (1.69)

Ah, so this is what the output should look like. The count of the
friendlies and non-friendlies. Then a call sign for a friendly (if there
are any with “too close” contacts), followed by a colon, then the
call sign of the “too close” contact and a distance in parentheses.

Understanding the Problem

19

• Here are some (more) example runs:
 % java RadarContacts 3.5 2 < radar4.txt

 Friendly aircraft: 2

 Non-friendly aircraft: 2

 EJ-475:

 CX-120 (3.35)

 CX-120:

 ? (1.69)

 EJ-475 (3.35)

Another example with a larger radius. This time it looks like there are two
friendlies that have “too close” contacts.

Understanding the Problem

20

• Here are some (more) example runs:
% java RadarContacts 3.5 1 < radar4.txt

 Friendly aircraft: 2

 Non-friendly aircraft: 2

 EJ-475:

 CX-120 (3.35)

 CX-120:

 EJ-475 (3.35)

 % java RadarContacts 3.5 0 < radar4.txt

 Friendly aircraft: 2

 Non-friendly aircraft: 2

 CX-120:

 ? (1.69)

OK, and a couple of examples where the mode is not 2.

Working out the Logic

21

• OK. I think I have a better understanding of the pieces of the problem, but I still
don’t know how to write a program to do all that.

• My next step will be to sort out the problem pieces so that I can figure out the
logic

• Several lectures ago, we talked about a program being a black box, where input
goes into it, and is transformed into whatever it’s supposed to output.

– Let’s look at that part first…

Working out the Logic

22

• I have two command line inputs, the radius and the mode

• I have a file input that tells me the number of contacts and the easting, northing
and call sign of each

• I have two parts to the output
– First, I have to output the count of the friendlies and the nonfriendlies

– Then I have to output the “report” – for each friendly, I have to list any contacts that are “too close”,
dependent on the mode that was input on the command line

Command Line Input:
radius (double, in km),
mode (int)

File Input:
of contacts,
easting, northing (int, in m),
 and call sign
 (String) for each

Count of friendlies and nonfriendlies

For each friendly, list too close contacts
dependent on the mode

Input

Output

Working out the Logic

23

• I think I can start working on the logic, just given the inputs and outputs.
– Here’s a start…

• Hey, this is great! I think I can code this part, and I’ve covered ¾ of the program!

• … But wait. There’s still that little tricky detail of the output report…
– OK, let’s keep going…

Get radius, mode from command line.
Get number of contacts from file.
For each contact,
 Get easting, northing, call sign.
Count number of nonfriendlies.
Calculate number of friendlies.
Output these to the screen.

Working out the Logic

24

• OK, now for a pass at the logic for the report part…

Get radius, mode from command line.
Get number of contacts from file.
For each contact,
 Get easting, northing, call sign.
Count number of nonfriendlies.
Calculate number of friendlies.
Output these to the screen.
For each friendly,
 Calculate the distance from it to each other contact.
 If distance < radius
 If mode is 0 or 2, and contact is nonfriendly,
 Write info to a nonfriendly String
 Else, if mode is 1 or 2 and contact is friendly,
 Write info to a friendly String.
 If friendly or nonfriendly isn’t empty,
 Print call sign followed by a colon.
 Print nonfriendly string.
 Print friendly string.

Working out the Logic

25

• I think that I’ve worked out the logic for the program, I think that will work. Now
for the real test… I’ll see if I have glossed over anything important, or made some
logic errors when I try to write the code.

Get radius, mode from command line.
Get number of contacts from file.
For each contact,
 Get easting, northing, call sign.
Count number of nonfriendlies.
Calculate number of friendlies.
Output these to the screen.
For each friendly,
 Calculate the distance from it to each other contact.
 If distance < radius
 If mode is 0 or 2, and contact is nonfriendly,
 Write info to a nonfriendly String
 Else, if mode is 1 or 2 and contact is friendly,
 Write info to a friendly String.
 If friendly or nonfriendly isn’t empty,
 Print call sign followed by a colon.
 Print nonfriendly string.
 Print friendly string.

Converting it to Code

26

Get radius, mode from command line.
Get number of contacts from file.
For each contact,
 Get easting, northing, call sign.
Count number of nonfriendlies.
Calculate number of friendlies.
Output these to the screen.
For each friendly,
 Calculate the distance from it to each other contact.
 If distance < radius
 If mode is 0 or 2, and contact is nonfriendly,
 Write info to a nonfriendly String
 Else, if mode is 1 or 2 and contact is friendly,
 Write info to a friendly String.
 If friendly or nonfriendly isn’t empty,
 Print call sign followed by a colon.
 Print nonfriendly string.
 Print friendly string.

// Name Michele Van Dyne

// Email mvandyne@mtech.edu

// Description Whatever we said in class

public class Radar

{

 public static void main(String [] args)

 {

 double radius = Double.parseDouble(args[0]);

 int mode = Integer.parseInt(args[1]);

 int contacts = StdIn.readInt();

 double [] east = new double[contacts];

 double [] north = new double[contacts];

 String [] callSign = new String[contacts];

 // Read all the numbers in

 for(int i = 0; i < contacts; i++)

 {

 east[i] = StdIn.readInt() / 1000.0;

 north[i] = StdIn.readInt() / 1000.0;

 callSign[i] = StdIn.readString();

 }

 }

}

And here’s the code we wrote in class
that brings us to the point of reading
in the contacts from the file.

Summary

27

• Problem Solving

– Understanding the Problem

– Working out the Logic

– Converting it to Code

– We’ll work through the rest of the code in lab
on Wed.

