HTTP, cookies, and caching

[http:/

Computer Networking:A Top Down Approach
6t edition

Jim Kurose, Keith Ross

Addison-Wesley

Some materials copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Ove rVieW application

* Chapter 2: Application Layer transport
— Many familiar services operate here network
* Web, email, Skype, P2P file sharing ink

— Socket programming
e HTTP

physical

— Statelessness

— Non-persistent vs. persistent connections
— Cookies

— Caching

HTTP: TCP + stateless

Uses TCP:

Client initiates TCP

connection (creates socket)

to server, port 80

Server accepts TCP
connection from client

HTTP messages
(application-layer
messages) exchanged
between browser (HTTP
client) and web server
(HTTP server)

TCP connection closed

HTTP is "stateless”

* Server maintains no
information about past
client requests

Protocols that maintain

"state" are complex!
> Past history (state) must be
maintained
» If server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

Trying out HTTP for yourself

1. Telnet to your favorite Web server:

telnet cis.poly.edu 80

opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
anything typed in sent

to port 80 at cis.poly.edu

2. Type in a GET HTTP request:

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

[by typing this in (hit carriage
return twice), you send

this minimal (but complete)

| GET request to HTTP server

3. Look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

Time

HTTP communication options

e

Multiple
connections and
sequential
requests.

Connection setup | —

HTTP
Request

L HTTP

Response

e — —————— — ———

Persistent
connection and
sequential
requests.

Pipelined
requests =

Persistent
connection and
pipelined
requests.

Persistent HTTP

Non-persistent HTTP Persistent HTTP
* At most one object Multiple objects
sent over TCP can be sent over
connection single TCP
— connection then connection
closed between client,
* Downloading server

multiple objects
required multiple
connections

Non-persistent HTTP

User enters URL: (contains text,

www . someSchool.edu/someDepartment/home.index references to 10
jpeg images)

1a. HTTP client initiates TCP

connection to HTTP server 1b. HTTP server at host

(process) at www.someSchool.edu waiting for

www.someSchool.edu on port TCP connection at port 80.

80 "accepts" connection, notifying
client

2. HTTP client sends HTTP request
message (containing URL) into TCP

connection socket. Message 3. HTTP server receives request
indicates that client wants object message, forms response message
someDepartment/home.index containing requested object, and

/ sends message into its socket
time

time

Non-persistent HTTP (cont.)

/ 4. HTTP server closes TCP connection.

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of 10
jpeg objects

Non-persistent HTTP: response time

RTT:

Time for small packet to travel

from client to server and back q
HTTP response time: -
* One RTT to initiate TCP L@Eﬁé‘iJSﬁ Na

connection RTT J

* One RTT for HTTP request and request

file o
first few bytes of HTTP - \ time to
< .
}transmit
response to return \ / tra
file -

* File transmission time

received

* Non-persistent HTTP response
time: time time

2RTT+ file transmission time

Non-persistent issues:
Requires 2 RTTs per object

Persistent HTTP

OS overhead for each TCP
connection

Browsers often open

parallel TCP connections to

fetch referenced objects

Persistent HTTP:

Server leaves connection
open after sending
response

Subsequent HTTP
messages between same
client/server sent over
open connection

Client sends requests as

soon as it encounters a
referenced object

As little as one RTT for all
the referenced objects

User-server state: cookies

Many Web sites use cookies

Four components:

1) Cookie header line of
HTTP response message

2) Cookie header line in next
HTTP request message

3) Cookie file kept on user's
host, managed by user's
browser

4) Back-end database at Web
site

Example:

e Susan always access
Internet from PC

* Visits specific e-commerce
site for first time

* When initial HTTP requests
arrives at site, site creates:

— Unique ID
— Entry in backend
database for ID

11

client

Cookies keeping state

|

\,/

—
ebay 8734

cookie file

ebay 8734

amazon 1678

one week later:

3
ebay 8734

amazon 1678

—

usual http request msg

< T

usual http response
set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

—

usual http request msg
cookie: 1678

usual http response msg

server

Amazon server
creates ID

1678 for user create Packend
entry database
~a
cookie- access
specific
action
access
cookie- /
specific
action

12

Cookies

What cookies can be used for:

* Authorization aside

* Shopping carts Cookies and privacy:

<+ Cookies permit sites to
learn a lot about you

< You may supply name and
e-mail to sites

e Recommendations

e User session state

— e.g. web e-mail

How to keep "state":

< Protocol endpoints: maintain state at sender/receiver over
multiple transactions

<+ Cookies: HT TP messages carry state

13

Improving performance

* How do we make things faster?

* Minimize traffic/latency between client/server
— Conditional requests
— Caching

— Compression

 Speed up server's response
— Multiple servers
— Geographically distributed servers
— Content delivery networks

14

HTTP Caching

* Clients often cache documents
— How and when should they check for changes?

e HTTP has cache related headers
— HTTP/1.0: "Expires: <date>"; "Pragma: no-cache"

— HTTP/1.1:

e Cache-Control: No-Cache, Private, Max-age: <seconds>

e E-tag: <some value>

1: Request 2: Check expiry 3: Conditional GET
F__é 4a: Not modified Program
4b: Response

Web browser

Y

Y

A

A

A

A

Web server

Conditional GETs

e Conditional GET

— Fetch resource only if it has changed
— Server avoids wasting resources to send again

— Client sets "if-modified-since" header field
e Server inspects "last modified" time of object

* Returns "304 Not Modified" if unchanged, otherwise
"200 OK" and new version.

— Client sets "if-no-match" using previous received
ETag for the desired object

* Server compares with current "hash" of object

HTTP conditional GET

GET / HTTP/1.1 -

Host: katie.mtech.edu s client server

Connection: keep-alive I

User-Agent: Mozilla/5.0

Accept: text/html, application/xhtml+xml) HT-I_-I? req_uest msg object

Accept-Encoding: gzip,deflate,sdch lf-modified-since: <date> —.

If-None-Match: "c-221-4ace9c0b09cc0" ____modified

If-Modified-Since: Wed, 14 Sep 2011 HTTP response before
<«

17:04:27 GMT HTTP/1.0 <date>

304 Not Modified

HTTP/1.1 304 Not Modified

Date: Thu, 17 Nov 2011 16:57:53 GMT] HTTP request msg .

Server: Apache/2.2.16 (Debian) If-modified-since: <date> —, OPject

Keep-Alive: timeout-15, max=100 modified

Connection: Keep-Alive HTTP response — atfter

ETag: " c-221-4ace9c0b09cc0"] HTTP/1.0 200 OK <date>

<data>

Levels of caching

* Caching can occur at many levels:
— In the client's browser
— Client configures browser to use web proxy
— Proxy at the ISP

— "voluntary proxy" versus intercepting/forced/
transparent

— Browser cache

- Organization Intemet/@
| //

T —
Proxy cache \@

Servers

)

Clients

18

Summary

* HTTP protocol

— Statelessness
* Helps keep things simple and scale

— Non-persistent vs. persistent connections
* Avoid 2RTT for each object retrieved

— Cookies

e Adding state to web interactions
— Caching

* Improve performance

* Reduce bandwidth requirements

