Uninformed Search

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search

= Uniform-Cost Search

Search Problems

= A search problem consists of:

e 8 D I O

= A successor function N 1.0 u

(WItII actiot 1S, COStS)
\ !
“E”, 1.0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

= State space:
= Cities
= Successor function:

= Roads: Go to adjacent city with
cost = distance

= Start state:
= Arad

= Goal test:

® |s state == Bucharest?

= Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

" Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122%)x4
= States for pathing?
120
= States for eat-all-dots?
120x(239)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

" |n a state space graph, each state occurs only !
once!

" The goal test is a set of goal nodes (maybe only one) /'

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
" The goal test is a set of goal nodes (maybe only one)

In a search graph, each state occurs only once!

We can rarely build this full graph in memory

) :)] Tiny search graph for a tiny
(it’s too big), but it’s a useful idea search problem

Search Trees

’ _ This is now / start
"N';,]..()/ “E”, 1.0
u ! _ Possible futures
— —

= Asearch tree:

= A “what if” tree of plans and their outcomes

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states

For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-~

Search Tree

S
——

d € P
T — — '
b C e h r q
I I — N 1
a a r p q f

P I . S
p f q C G
' —_~ .
a ¢ G a

f?‘ /

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

M Vaslui

Hirsova

86

Eforie

Searching with a Search Tree

Arad

CAad > CFagaras> COradea> @iricu Vie)

= Search:
* Expand out potential plans (tree nodes)
" Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |[mportant ideas:
" Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

: 4 1 node
Space complexity?
b nodes
2
Cartoon of search tree: b* nodes
: . m tiers <

= bis the branching factor

" mis the maximum depth

= solutions at various depths

\ b™ nodes

Number of nodes in entire tree?
" 1+b+b?+...bM"=0(bM)

Depth-First Search (DFS) Properties

= What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
. m tiers <
" How much space does the fringe take?
= Only has siblings on path to root, so O(bm)
" |sitcomplete? b™ nodes

= m could be infinite, so only if we prevent
cycles (more later)

" [sitoptimal?

= No, it finds the “leftmost” solution,
regardless of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe

Breadth-First Search

is a FIFO queue
-

©)
Search |
< © ® ® © @

Tiers | N PN |

a h r p q f

N | | RN

_ qg f q (ll G

PN .

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?
= Processes all nodes above shallowest solution b 1 node
= Let depth of shallowest solution be s b nodes

_ . s tiers < ,
= Search takes time O(b?®) b2 nodes

* How much space does the fringe take? - / o \ bs nodes
= Has roughly the last tier, so O(b®)

" |sit complete? o b™ nodes
= s must be finite if a solution exists, so yes!

" |sit optimal?
= Only if costs are all 1 (more on costs later)

Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

Search Strategies Demo

What search
strategy is this?

Breadth-First
Search (BFS)

Search Strategies Demo

What search
strategy is this?

Depth-First
Search (DFS)

What search
strategy is this?

Depth-First
Search (DFS)

_ Search StrategiesDemo =~ =00

_ Search Strategies Demo

What search
strategy is this?

Breadth-First
Search (BFS)

Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

" [sn’t that wastefully redundant?

= Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

22 @
O

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least g, then the
“effective depth” is roughly C*/¢

C*le “tiers” <
= Takes time O(b®"¢) (exponential in effective depth)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®"¢)

M)
O/

" |sitcomplete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

" [sitoptimal?

= Yes! (Proof next lecture via A*)

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

" The good: UCS is complete and optimall!

= The bad:

= Explores options in every “direction”
= No information about goal location

= \We'll fix that soon!

Search Strategies Demo

What search
strategy is this?

Breadth-First
Search (BFS)

Search Strategies Demo

What search
strategy is this?

Uniform Cost
Search (UCS)

Search Strategies Demo

What search
strategy is this?

Depth-First
Search (DFS)

The One Queue

= All these search algorithms are the
same except for fringe strategies L@z\;ﬂ G‘\gﬂ \g{\i&‘ﬂl . ﬂ
= Conceptually, all fringes are priority |

qgueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object

Search Gone Wrong?

- MAPQVEST.

ICELAND

UOIN
[®PiH
¥S

eq

il L

E"'."'a)'{_ll:l ; El:l-“ o i
1 Yilnius _~ B
e i
Bizty=tok E-I: BELARI.ISFU

POLAND i~ Kievy

) -

o e
\S} s 1000
~

200 400 &O0

Start: Haugesund, Rogaland, Morway
End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

» 2005 MapQuest.com, Inc.

nrk.no/alltidmoro

Search and Models

= Search operates over
models of the world

" The agent doesn’t
actually try all the plans
out in the real world!

" Planning is all “in
simulation”

" Your search is only as
good as your models...

Some Hints for P1

" Graph search is almost always better than tree search (when not?)

" Implement your closed list as a dict or set!

= Nodes are conceptually paths, but better to represent with a state,
cost, last action, and reference to the parent node

