Probability
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Our Status

= We're done with Part | Search and Planning!

= Part Il: Probabilistic Reasoning
= Diagnosis -
= Speech recognition
® Tracking objects
= Robot mapping
= Genetics
" Error correcting codes
= .. lots more!

= Part lll: Machine Learning



Today

= Probability

= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution

Product Rule, Chain Rule, Bayes’ Rule
" |Inference

" Independence

= You'll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!




Inference in Ghostbusters

= Aghostisin the grid

somewhere

= Sensor readings tell how
close a square is to the

ghost
®= On the ghost: red

= 1 or 2 away: orange

= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)

0.05

0.15

0.5

0.3

[Demo: Ghostbuster — no probability (L12D1) ]



Uncertainty

= General situation:

= Observed variables (evidence): Agent knows
certain things about the state of the world
(e.g., sensor readings or symptoms)

= Unobserved variables: Agent needs to reason
about other aspects (e.g. where an object is or M..
0.17 0.10

what disease is present)

= Model: Agent knows something about how M
the known variables relate to the unknown
variables .

" Probabilistic reasoning gives us a

framework for managing our beliefs and -
knowledge




Random Variables

" Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R=lIsitraining?

= T=lIsithotorcold?

= D =How long will it take to drive to work?
= | =Whereis the ghost?

= We denote random variables with capital letters

= |jke variables in a CSP, random variables have domains

= Rin{true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, o)

= Lin possible locations, maybe {(0,0), (0,1), ...}



= Associate a probability with each value

= Temperature:

Probability Distributions

P(T)
T P
hot 0.5
cold | 0.5

= \Weather:

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W = rain) = 0.1

Ve P(X =2)>0

and

 P(X=uz)=1



Joint Distributions

" Ajoint distribution over a set of random variables: X1, X5,...Xp

specifies a real number for each assignment (or outcome):

P(X1=x1,X0=1xo,... Xy, = xn)

P(T, W)
P(xq,xo,...2n)
T W P
= Must obey: P(x1,25,...2n) >0 hot | sun | 0.4
hot | rain 0.1
Z P(ﬂjla o, .. xn) =1 cold | sun 0.2
(21,22,...n) cold | rain | 0.3

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!




Probabilistic Models

A probabilistic model is a joint distribution Distribution over TW

over a set of random variables

T W P
Probabilistic models: hot sun 0.4
= (Random) variables with domains hot rain 0.1
= Assignments are called outcomes
= Joint distributions: say whether assignments cold >un 0.2
(outcomes) are likely cold rain 0.3
= Normalized: sum to 1.0

. _ . : : :
Ideally: only certain variables directly interact Constraint over TW

Constraint satisfaction problems: T W
= Variables with domains

= Constraints: state whether assignments are

possible hot rain
= |deally: only certain variables directly interact

hot sun

cold sun

- [ ||| ©

cold rain




Events

= An event is a set E of outcomes

P(E)= )  P(z1...zn)

(ml...mn)eE

" From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
0.4

= Probability that it’s hot?
04+0.1=05

= Probability that it’s hot OR sunny?
04+0.1+0.2=0.7

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




" P(+x, +y) ?
0.2

" P(+x) ?
0.2+0.3=0.5

= P(-y OR +x) ?
0.2+03+0.1=0.6

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

—
P(t) =3 P(t,s)

—-
P(s) = Z P(t,s)
t

P(X1=uz1) =) P(X1=u11,Xp =)

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4




Quiz: Marginal Distributions

P(X)
P(X,Y) X P
— +X 0.2+0.3=05
X Y P
X +y 0.2 P(z) = Z P(z,y) -X 0.4+01=0.5
X y 0.3 J P(Y)
-X +y 0.4 Y P
—
X -y 0.1 +y  102+0.4=0.6

P(y) = ;P(ﬂi‘a y) v l03+01=04




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

= P(a|b) = “probability of a happening given b happened”
P(a,b
P(alb) = 2420
P(b)
P(a)
P(T, W)

LI L . . _P(W=sT=c) 02
ot [ wn | 0a | FPV=eT=0=""p0 5" =55 =04
hot rain 0.1 -
cold sun 0.2 =P(W=s5,T=c)+P(W=r,T=c)
cold rain 0.3 —02+03 =0.5




Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

" P(+x | +y) ?

= P(-x| +y)?

= P(-y | +x) ?

P(+x,+y) 0.2

P(+y)

T 02404

P(-x,+y) 04

P(+y)

2
1—P(+x|+y)= =

T 02404

3

P(-y,+x) 03

P(+x)

T 02403

1
3

2
3

3
5



Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

P(W|T = hot) P(T,W)
Y
W P
T W P

sun 0.8 P(W =sun|T = hot)
- hot sun 0.4
~ rain 0.2 P(W =rain|T = hot) ot o 01
E: P(W|T = cold) cold | sun 0.2

W p cold rain 0.3

sun 0.4 P(W =sun|T = cold)

rain 0.6 P(W =rain|T = cold)




Normalization Trick

= Going from a joint distribution to a conditional distribution

P(WZS\T:C):P(W:S,TZC)

P(T = ¢)
. P(W =s,T =c)
P(T, W) T PW=sT=c)+PW=r1=c)
0.2
= = 0.4
T W P 0.2+ 0.3 P(W|T = ¢)
hot sun 0.4 vy >
h ' A )
ot rain 0 un 04
cold sun 0.2 =i 0.6
P(W =rT = .
cold rain 0.3 P(W =rT =c) = ( P(Tl 0 c)

. P(W =nr,T =c¢)

- PW=sT=c¢)+P(W=rT=c)
03
02403

0.6




Normalization Trick

P(W=35T=c)

P(T =r¢)
_ PW =sT=c)
CPW=sT=c)+PW=rT=c)

PW =sT=c¢c)=

0.240.3
P(T,W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(c,W) (make it sum to one) P(WI|T = c)
hot sun 0.4 evidence T W P i p
hot rain 0.1 I cold sun 0.2 | sun 0.4
cold sun 0.2 cold | rain 1 0.3 rain | 0.6
cold rain 0.3

PW =vr,T =¢)
P(T =¢)
_ P(W=rT=c¢c)
C PW=sT=c)+PW=rT=0¢)
03
T 02403

PW =r|T=¢)=

=056



Normalization Trick

P(T, W) SELECT the joint
probabilities
T W P matching the
hot sun 0.4 evidence
hot rain 0.1 —l
cold sun 0.2
cold rain 0.3

P(c, W)

T

W

cold

sun

0.2

cold

rain

0.3

NORMALIZE the
selection
(make it sum to one)

ﬂ

= Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

P(x1,x2)
>oaq P, 72)

P(xy,22) _

P(x1|zo) =

P(x2)

P(W|T = ¢)
w P
sun 0.4
rain 0.6




" P(X | Y=-y) ?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

X Y P
+X -y 103
-X -y |10.1

NORMALIZE the
selection
(make it sum to one)

ﬂ

X P(X]-y)
+x | 0.3/0.4=0.75
x | 0.1/0.4=0.25




= (Dictionary) To bring or restore to a

= Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1

W P
sun 0.2
rain 0.3

Normalize

ﬂ
Z=0.5

To Normalize

normal condition

W P
sun 0.4
rain 0.6

N

All entries sum to ONE

= Example 2

T W P
hot sun 20
hot rain 5
cold sun 10
cold rain 15

Normalize

d
Z =50

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Probabilistic Inference

= Probabilistic inference: compute a desired !‘\A Y

probability from other known probabilities (e.g.
conditional from joint) ///

= We generally compute conditional probabilities
= P(on time | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5a.m.) =0.95 '
| - o . Ci\‘\% ‘_‘ "

= P(on time | no accidents, 5 a.m., raining) = 0.80 L

= QObserving new evidence causes beliefs to be updated




Inference by Enumeration

=  General case:
=  Evidence variables:
= Query* variable: Q

= Hidden variables: Hi...H,
= Step 1: Select the
entries consistent
with the evidence
Peod
0.05
0.25
0.07
0z |
= —
0.01 w

P(Q,e1...e;) = Z P(Qahl.

Ei1...E,=e1...¢e

X1, Xo, ... Xn

All variables

Step 2: Sum out H to get joint
of Query and evidence

X1, Xo,...Xn

We want:

. hr,e1...ep)

_/

* Works fine with
multiple query
variables, too

P(Qle1 .. .ex)

= Step 3: Normalize

1
><_
A

Zzzp(Qael"'ek)

1

P(Qle1--ex) = - P(Q,e1---ek)

VA



Inference by Enumeration

= P(W)?
Q={W}E={}LH={T}

= P(W | winter)?

Q={W}, E=1{5}, H=1{T}

= P(W | winter, hot)?
Q={W}L E={S, T, H={}

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

W P(W)

sun [0.30+0.10+0.10+0.15=0.65
rain | 0.05+ 0.05+ 0.05+0.20=0.35
W P(W | winter)

sun (0.10 + 0.15) / 0.50=0.50
rain (0.05+0.20) /0.50=0.50

W P(W | winter, hot)

sun 0.10/0.15=2/3

rain 0.05/0.15=1/3




Inference by Enumeration

= QObvious problems:
= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(zly) = P(z,y) <> rPaws=

~ =l




The Product Rule

P(y)P(z|ly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D w | P D | W
R p wet sun 0.1 wet | sun
sun 0.8 ary sun | 09 <:> dry | sun
cain 02 wet rain 0.7 wet rain
dry rain | 0.3 dry | rain




The Chain Rule

= More generally, can always write any joint distribution as an incremental product of
conditional distributions

P(x1,x0,23) = P(x1)P(zz|x1)P(x3|z1, 2)

P(z1,22,...zn) = || P(zilz1 ... 2i_1)
7

= Why is this always true?

P(xo,x1) P(xs, 21, 29)

P(;’I.‘l. X9, .‘_'I.‘B) = P(;‘rl)P(;’Fg|:.'I?1)P(?-r3|?r1' "-":";2) — P(Il) P(-rl) P(’I-‘1 "I-‘Q)



Bayes Rule




Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(xz|y)P(y) = P(y|z)P(x)

That’s my rule! }

= Dividing, we get:

P(aly) = 292 by

P(y)
= Why is this at all helpful?

= |Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

= |n the running for most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P (effect)

= Example:

= M: meningitis, S: stiff neck

P(+m) = 0.0001 o

xample
P(+S‘ + m) =08 givens
P(+s| —m) =0.01_

P(+m| +s) = P(ts| +m)P(+m) _ P(+s| +m)P(+m) 0.8 x 0.0001

P(+s) " P(+s|+m)P(+m) + P(+s| — m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small: 0.008
= Note: you should still get stiff necks checked out! Why?



= Gjven:

Quiz: Bayes’ Rule

P(D|W)
P(W) D W P
R P wet sun 0.1
un 08 dry sun 0.9
rain 0.2 wet rain 0.7
dry rain 0.3

= Whatis P(W | dry) ?

W P(W | dry)

sun P(-q“_l-n,'({-;-g) _ P(({-}'y|.%"H_.-;-3)P(Si{.-}-}) _ P(({-}'y|.’5"H_.-;'3)P(,qu_.-;'3) | | _ OQ * 08 ~ 0.023
P(dry) P(dry|sun)P(sun) + P(dry|rain)P(rain) 0.9 % 0.8 + 0.3 % (.2

rain

P(rain|dry) =

P(dry|rain) P(rain)

P(dry|rain)P(rain) 0.3%0.2

~ 0.077

P(dry)

B P(dry|sun)P(sun) + P(dry|rain)P(rain) T 09%08+03%02




Ghostbusters, Revisited

= Let’s say we have two distributions:

= Prior distribution over ghost location: P(G)
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R=vyellow | G=(1,1)) =0.1
= We can calculate the posterior
distribution P(G|r) over ghost locations
EEm

P(g|r) o< P(r|g)P(g)

given a reading using Bayes’ rule:

[Demo: Ghostbuster — with probability (L12D2) ]



Independence

= Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)
X1UlY

Vo,y P(x,y) = P(x)P(y)

= Says the joint distribution factors into a product of two simple ones
= Usually variables aren’t independent!

= Can use independence as a modeling assumption
= Independence can be a simplifying assumption
=  Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity}?

" |ndependence is like something from CSPs: what?



Example: Independence?

P(T)
T P
hot | 0.4+0.1=0.5
P (T, W) cold | 0.2+0.3=0.5 Py (T, W) = P(T)P(W)
T W P T W P
hot sun 0.4 hot | sun | 0.5*0.6=0.3
hot rain 0.1 hot | rain | 0.5*0.4=0.2
cold sun 0.2 cold [ sun | 0.5*0.6=0.3
cold rain 0.3 P%VV) cold | rain | 0.5*0.4=0.2
W P

sun | 0.4+0.2=0.6
rain | 0.1+0.3=0.4




Example: Independence

" N fair, independent coin flips:

P(X71) P(X>) P(Xn)
H | 05 H | 05 o H | 05
T 0.5 T 0.5 T 0.5

\

—

P(X1,Xo,...Xn)




Conditional Independence




Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z

if and only if:
Vz,y,z 1 P(z,ylz) = P(z|z) P(y|z)

or, equivalently, if and only if




Conditional Independence

= \What about this domain:

= Traffic 1 U | R

= Umbrella
= Raining




Conditional Independence

= \What about this domain:

$
= Fire |

* Smoke <
= Alarm ﬁg@& q ;
AL F|S o




Conditional Independence and the Chain Rule

= Chain rule: P(X1,X5,...Xn) = P(X1)P(X2|X1)P(X3]X1,X2) ...

= Trivial decomposition:

P(Traffic, Rain,Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

= Bayes’nets / graphical models help us express conditional independence assumptions



Ghostbusters Chain Rule

P(T,B,G) = P(G) P(T | G) P(B | T, G)

Each sensor depends only (assuming conditional independence)
on where the ghost is P(T,B,G) = P(G) P(T|G) P(B|G)
That means, the two sensors are
conditionally independent, given the T B G P(T,B,G)
ghost position

+t +b +g 0.16
T: Top square is red +t +b -g 0.16

B: Bottom square is red
G: Ghost is in the top

#t | b | +g | 024

Givens +t -b -g 0.04
P(+g)=0.5 -t | +b | +g 0.04
P( -g)=0.5

P(+t | +g)=0.8 t | b 8| 024
P(+t | -g)=0.4 -t b | +g 0.06
P(+b | +g)=0.4

P(+b | -g)=0.8 t | -b | -g | 0.06




