Particle Filters

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Today

= HMMs

= Particle filters
" Demo bonanza!
= Most-likely-explanation queries



[Demo: Ghostbusters Markov Model (L15D1)]
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Recap: Filtering
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<0.5, 0.5> Prior on X,

<0.82, 0.18> Observe

<0.63, 0.37> Elapse time

<0.88,0.12> Observe
[Demo: Ghostbusters Exact Filtering (L15D2)]



Particle Filtering




Particle Filtering

Filtering: approximate solution

Sometimes | X]| is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference

= Track samples of X, not all values

= Samples are called particles

= Time per step is linear in the number of samples
But: number needed may be large
= |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample
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Representation: Particles

= Qur representation of P(X) is now a list of N particles (samples)
= Generally, N << | X]|
= Storing map from X to counts would defeat the point

* P(x) approximated by number of particles with value x
= So, many x may have P(x) = 0!
= More particles, more accuracy

" For now, all particles have a weight of 1

Particles:




Particle Filtering: Elapse Time

= Each particle is moved by sampling its next
position from the transition model

' = sample(P(X'|z))

= This is like prior sampling — samples’ frequencies
reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

* This captures the passage of time

= |f enough samples, close to exact values before and
after (consistent)
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Particle Filtering: Observe

= Slightly trickier:

Don’t sample observation, fix it

Similar to likelihood weighting, downweight
samples based on the evidence

w(x) = P(e|x)
B(X) «x P(e|X)B/'(X)
As before, the probabilities don’t sum to one,

since all have been downweighted (in fact they
now sum to (N times) an approximation of P(e))

Particles:
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Particle Filtering: Resample

= Rather than tracking weighted samples, we
resample

= N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

= This is equivalent to renormalizing the
distribution

= Now the update is complete for this time step,
continue with the next one

Particles:

(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=4
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Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
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Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Robot Localization

" |n robot localization:

= We know the map, but not the robot’s position

= QObservations may be vectors of range finder readings DIRECTORY

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique




Particle Filter Localization (Sonar)
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[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs) T~
and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mappingl-new.avi]



Dynamic Bayes Nets




Dynamic Bayes Nets (DBNs)

= We want to track multiple variables over time, using
multiple sources of evidence

" |dea: Repeat a fixed Bayes net structure at each time

= Variables from time t can condition on those from t-1

t=1 t=2 t=3
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= Dynamic Bayes nets are a generalization of HMMs

[Demo: pacman sonar ghost DBN model (L15D6)]



DBN Particle Filters

A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G,2=(3,3) G,*=(5,3)

Elapse time: Sample a successor for each particle
= Example successor: G,2=(2,3) G,* = (6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample

= Likelihood: P(E,® |G,?) * P(E," | G,P)

Resample: Select prior samples (tuples of values) in proportion to their likelihood



Most Likely Explanation




HMMs: MLE Queries

= HMMs defined by
= States X
= Observations E

= |nitial distribution: P(X1)
* Transitions: P(X|X_1)
= Emissions: P(FE|X)
= New query: most likely explanation: arg max P(xq:¢|le1:¢)

L]:t

= New method: the Viterbi algorithm



State Trellis

State trellis: graph of states and transitions over time

sun sun sun sun
rain rain rain rain
X1 X5 - Xy

Each arc represents some transition Lt—1 — Lt

Each arc has weight  P(x¢|zi—1)P(et|zt)

Each path is a sequence of states

The product of weights on a path is that sequence’s probability along with the evidence
Forward algorithm computes sums of paths, Viterbi computes best paths



Forward / Viterbi Algorithms

sun sun sun sun
rain rain rain rain
X1 X - Xy
Forward Algorithm (Sum) Viterbi Algorithm (Max)
ftlz] = P2, e1:) mylze] = max P(z1:4-1, 2t €1:¢)
= P(et|xt) Y, P(atlee_1)fr1lze 1] = Petfer) max P(@efay—1)my—1[z-1]
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