
Search Problems

 A search problem consists of:

 A state space

 A successor function
 (with actions, costs)

 A start state and a goal test

 A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

State Space Sizes?

 World state:
 Agent positions: 120

 Food count: 30

 Ghost positions: 12

 Agent facing: NSEW

 How many
 World states?

 120x(230)x(122)x4

 States for pathing?

 120

 States for eat-all-dots?

 120x(230)

Searching with a Search Tree

 Search:
 Expand out potential plans (tree nodes)

 Maintain a fringe of partial plans under consideration

 Try to expand as few tree nodes as possible

Tree Search Pseudo-Code

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

Graph Search Pseudo-Code

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

f d

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

 What nodes DFS expand?
 Some left prefix of the tree.

 Could process the whole tree!

 If m is finite, takes time O(bm)

 How much space does the fringe take?
 Only has siblings on path to root, so O(bm)

 Is it complete?
 m could be infinite, so only if we prevent

cycles (more later)

 Is it optimal?
 No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

 What nodes does BFS expand?
 Processes all nodes above shallowest solution

 Let depth of shallowest solution be s

 Search takes time O(bs)

 How much space does the fringe take?
 Has roughly the last tier, so O(bs)

 Is it complete?
 s must be finite if a solution exists, so yes!

 Is it optimal?
 Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Iterative Deepening

…
b

 Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

 Run a DFS with depth limit 1. If no solution…

 Run a DFS with depth limit 2. If no solution…

 Run a DFS with depth limit 3. …..

 Isn’t that wastefully redundant?

 Generally most work happens in the lowest
level searched, so not so bad!

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first:

Fringe is a priority queue

(priority: cumulative cost)
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

16 4
11

5

7 13

8

10 11

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

…

Uniform Cost Search (UCS) Properties

 What nodes does UCS expand?
 Processes all nodes with cost less than cheapest solution!

 If that solution costs C* and arcs cost at least  , then the
“effective depth” is roughly C*/

 Takes time O(bC*/) (exponential in effective depth)

 How much space does the fringe take?
 Has roughly the last tier, so O(bC*/)

 Is it complete?
 Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

 Is it optimal?
 Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c  3

c  2

c  1

Uniform Cost Issues

 Remember: UCS explores increasing cost
contours

 The good: UCS is complete and optimal!

 The bad:
 Explores options in every “direction”
 No information about goal location

 We’ll fix that soon!

Start Goal

…

c  3

c  2

c  1

Search Heuristics

 A heuristic is:
 A function that estimates how close a state is to a goal

 Maps a state to a number

 Designed for a particular search problem

 Example: Manhattan distance for pathing

 Example: Euclidean distance for pathing

10

5

11.2

Greedy Search

 Strategy: expand a node that you think is
closest to a goal state
 Heuristic: estimate of distance to nearest goal for

each state

 A common case:

 Best-first takes you straight to the (wrong) goal

 Worst-case: like a badly-guided DFS

…
b

…
b

Combining UCS and Greedy

 Uniform-cost orders by path cost, or backward cost g(n)

 Greedy orders by goal proximity, or forward cost h(n)

 A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

e d

d G

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

 Should we stop when we enqueue a goal?

 No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0 h = 3

Admissible Heuristics

 A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

 Examples:

 Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4
15

Trivial Heuristics, Dominance

 Dominance: ha ≥ hc if

 Heuristics form a semi-lattice:
 Max of admissible heuristics is admissible

 Trivial heuristics
 Bottom of lattice is the zero heuristic (what

does this give us?)

 Top of lattice is the exact heuristic

Consistency of Heuristics

 Main idea: estimated heuristic costs ≤ actual costs

 Admissibility: heuristic cost ≤ actual cost to goal

 h(A) ≤ actual cost from A to G

 Consistency: heuristic “arc” cost ≤ actual cost for each arc

 h(A) – h(C) ≤ cost(A to C)

 Consequences of consistency:

 The f value along a path never decreases

 h(A) ≤ cost(A to C) + h(C)

 A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Optimality

 Tree search:
 A* is optimal if heuristic is admissible
 UCS is a special case (h = 0)

 Graph search:

 A* optimal if heuristic is consistent
 UCS optimal (h = 0 is consistent)

 Consistency implies admissibility

 In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

Constraint Satisfaction Problems

 Standard search problems:
 State is a “black box”: arbitrary data structure
 Goal test can be any function over states
 Successor function can also be anything

 Constraint satisfaction problems (CSPs):
 A special subset of search problems

 State is defined by variables Xi with values from a
domain D (sometimes D depends on i)

 Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

 Simple example of a formal representation language

 Allows useful general-purpose algorithms with more

power than standard search algorithms

Constraint Graphs

 Binary CSP: each constraint relates (at most) two
variables

 Binary constraint graph: nodes are variables, arcs
show constraints

 General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Backtracking Search

 Backtracking search is the basic uninformed algorithm for solving CSPs

 Idea 1: One variable at a time
 Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 Only need to consider assignments to a single variable at each step

 Idea 2: Check constraints as you go
 I.e. consider only values which do not conflict previous assignments
 Might have to do some computation to check the constraints
 “Incremental goal test”

 Depth-first search with these two improvements
 is called backtracking search (not the best name)

 Can solve n-queens for n  25

 Filtering: Keep track of domains for unassigned variables and cross off bad options

 Forward checking: Cross off values that violate a constraint when added to the existing
assignment

Forward Checking

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

Consistency of A Single Arc

 An arc X  Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

 Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V

Arc Consistency of an Entire CSP

 A simple form of propagation makes sure all arcs are consistent:

 Important: If X loses a value, neighbors of X need to be rechecked!
 Arc consistency detects failure earlier than forward checking
 Can be run as a preprocessor or after each assignment
 What’s the downside of enforcing arc consistency?

Remember:
Delete from

the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Ordering: Minimum Remaining Values

 Variable Ordering: Minimum remaining values (MRV):

 Choose the variable with the fewest legal left values in its domain

 Why min rather than max?

 Also called “most constrained variable”

 “Fail-fast” ordering

Ordering: Least Constraining Value

 Value Ordering: Least Constraining Value
 Given a choice of variable, choose the least

constraining value

 I.e., the one that rules out the fewest values in
the remaining variables

 Note that it may take some computation to
determine this! (E.g., rerunning filtering)

 Why least rather than most?

 Combining these ordering ideas makes
 1000 queens feasible

Tree-Structured CSPs

 Algorithm for tree-structured CSPs:
 Order: Choose a root variable, order variables so that parents precede children

 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

 Runtime: O(n d2) (why?)

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

O(finding minimal cutset)? NP-hard

Local Search

 Tree search keeps unexplored alternatives on the fringe (ensures completeness)

 Local search: improve a single option until you can’t make it better (no fringe!)

 New successor function: local changes

 Generally much faster and more memory efficient (but incomplete and suboptimal)

Iterative Algorithms for CSPs

 Local search methods typically work with “complete” states, i.e., all variables assigned

 To apply to CSPs:
 Take an assignment with unsatisfied constraints
 Operators reassign variable values
 No fringe! Live on the edge.

 Algorithm: While not solved,

 Variable selection: randomly select any conflicted variable
 Value selection: min-conflicts heuristic:

 Choose a value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

Hill Climbing Diagram

Adversarial Search (Minimax)

 Deterministic, zero-sum games:

 Tic-tac-toe, chess, checkers

 One player maximizes result

 The other minimizes result

 Minimax search:

 A state-space search tree

 Players alternate turns

 Compute each node’s minimax value:
the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min 2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Evaluation Functions

 Evaluation functions score non-terminals in depth-limited search

 Ideal function: returns the actual minimax value of the position
 In practice: typically weighted linear sum of features:

 e.g. f1(s) = (num white queens – num black queens), etc.

Minimax Example

12 8 5 2 3 2 14 4 6

Minimax Pruning

12 8 5 2 3 2 14

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞

for each successor of state:
v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞

for each successor of state:
v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Properties

 This pruning has no effect on minimax value computed for the root!

 Values of intermediate nodes might be wrong
 Important: children of the root may have the wrong value

 So the most naïve version won’t let you do action selection

 Good child ordering improves effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)

 Doubles solvable depth!

 Full search of, e.g. chess, is still hopeless…

 This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Expectimax Search

 Why wouldn’t we know what the result of an action will be?
 Explicit randomness: rolling dice
 Unpredictable opponents: the ghosts respond randomly
 Actions can fail: when moving a robot, wheels might slip

 Values should now reflect average-case (expectimax)

outcomes, not worst-case (minimax) outcomes

 Expectimax search: compute the average score under
optimal play
 Max nodes as in minimax search
 Chance nodes are like min nodes but the outcome is uncertain
 Calculate their expected utilities
 I.e. take weighted average (expectation) of children

 Later, we’ll learn how to formalize the underlying uncertain-

result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

[Demo: min vs exp (L7D1,2)]

Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:
 p = probability(successor)

v += p * value(successor)
return v

5 7 8 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Utilities

 Utilities are functions from outcomes
(states of the world) to real numbers
that describe an agent’s preferences

 Where do utilities come from?
 In a game, may be simple (+1/-1)
 Utilities summarize the agent’s goals
 Theorem: any “rational” preferences can

be summarized as a utility function

 We hard-wire utilities and let
behaviors emerge
 Why don’t we let agents pick utilities?
 Why don’t we prescribe behaviors?

Preferences

 An agent must have preferences among:

 Prizes: A, B, etc.

 Lotteries: situations with uncertain prizes

 Notation:
 Preference:

 Indifference:

A B

p 1-p

 A Lottery A Prize

A

Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality

 Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 Given any preferences satisfying these constraints, there exists a real-valued
 function U such that:

 I.e. values assigned by U preserve preferences of both prizes and lotteries!

 Maximum expected utility (MEU) principle:
 Choose the action that maximizes expected utility
 Note: an agent can be entirely rational (consistent with MEU) without ever representing or

manipulating utilities and probabilities
 E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

MEU Principle

Markov Decision Processes

 An MDP is defined by:
 A set of states s  S
 A set of actions a  A
 A transition function T(s, a, s’)

 Probability that a from s leads to s’, i.e., P(s’| s, a)
 Also called the model or the dynamics

 A reward function R(s, a, s’)
 Sometimes just R(s) or R(s’)

 A start state
 Maybe a terminal state

 MDPs are non-deterministic search problems

 One way to solve them is with expectimax search
 We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

 In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

 For MDPs, we want an optimal policy *: S → A
 A policy  gives an action for each state

 An optimal policy is one that maximizes
expected utility if followed

 An explicit policy defines a reflex agent

 Expectimax didn’t compute entire policies
 It computed the action for a single state only

Discounting

 How to discount?
 Each time we descend a level, we

multiply in the discount once

 Why discount?
 Sooner rewards probably do have

higher utility than later rewards

 Also helps our algorithms converge

 Example: discount of 0.5
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

 U([1,2,3]) < U([3,2,1])

Values of States

 Fundamental operation: compute the (expectimax) value of a state

 Expected utility under optimal action

 Average sum of (discounted) rewards

 This is just what expectimax computed!

 Recursive definition of value:

a

s

s, a

s,a,s’

s’

Value Iteration

 Start with V0(s) = 0: no time steps left means an expected reward sum of zero

 Given vector of Vk(s) values, do one ply of expectimax from each state:

 Repeat until convergence

 Complexity of each iteration: O(S2A)

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Policy Evaluation

 How do we calculate the V’s for a fixed policy ?

 Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

 Efficiency: O(S2) per iteration

 Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

(s)

s

s, (s)

s, (s),s’

s’

Policy Extraction

 Let’s imagine we have the optimal values V*(s)

 How should we act?

 It’s not obvious!

 We need to do a mini-expectimax (one step)

 This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

 Let’s imagine we have the optimal q-values:

 How should we act?

 Completely trivial to decide!

 Important lesson: actions are easier to select from q-values than values!

Policy Iteration

 Evaluation: For fixed current policy , find values with policy evaluation:
 Iterate until values converge:

 Improvement: For fixed values, get a better policy using policy extraction
 One-step look-ahead:

Reinforcement Learning

 Still assume a Markov decision process (MDP):

 A set of states s  S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

 Still looking for a policy (s)

 New twist: don’t know T or R

 I.e. we don’t know which states are good or what the actions do

 Must actually try actions and states out to learn

Q-Learning

 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go

 Receive a sample (s,a,s’,r)

 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

How to Explore?

 Several schemes for forcing exploration
 Simplest: random actions (-greedy)

 Every time step, flip a coin

 With (small) probability , act randomly

 With (large) probability 1-, act on current policy

 Problems with random actions?
 You do eventually explore the space, but keep

thrashing around once learning is done

 One solution: lower  over time

 Another solution: exploration functions

 [Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Approximate Q-Learning

 Q-learning with linear Q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s

