
Search Problems

 A search problem consists of:

 A state space

 A successor function
 (with actions, costs)

 A start state and a goal test

 A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

State Space Sizes?

 World state:
 Agent positions: 120

 Food count: 30

 Ghost positions: 12

 Agent facing: NSEW

 How many
 World states?

 120x(230)x(122)x4

 States for pathing?

 120

 States for eat-all-dots?

 120x(230)

Searching with a Search Tree

 Search:
 Expand out potential plans (tree nodes)

 Maintain a fringe of partial plans under consideration

 Try to expand as few tree nodes as possible

Tree Search Pseudo-Code

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

Graph Search Pseudo-Code

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

f d

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

 What nodes DFS expand?
 Some left prefix of the tree.

 Could process the whole tree!

 If m is finite, takes time O(bm)

 How much space does the fringe take?
 Only has siblings on path to root, so O(bm)

 Is it complete?
 m could be infinite, so only if we prevent

cycles (more later)

 Is it optimal?
 No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

 What nodes does BFS expand?
 Processes all nodes above shallowest solution

 Let depth of shallowest solution be s

 Search takes time O(bs)

 How much space does the fringe take?
 Has roughly the last tier, so O(bs)

 Is it complete?
 s must be finite if a solution exists, so yes!

 Is it optimal?
 Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Iterative Deepening

…
b

 Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

 Run a DFS with depth limit 1. If no solution…

 Run a DFS with depth limit 2. If no solution…

 Run a DFS with depth limit 3. …..

 Isn’t that wastefully redundant?

 Generally most work happens in the lowest
level searched, so not so bad!

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first:

Fringe is a priority queue

(priority: cumulative cost)
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

16 4
11

5

7 13

8

10 11

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

…

Uniform Cost Search (UCS) Properties

 What nodes does UCS expand?
 Processes all nodes with cost less than cheapest solution!

 If that solution costs C* and arcs cost at least , then the
“effective depth” is roughly C*/

 Takes time O(bC*/) (exponential in effective depth)

 How much space does the fringe take?
 Has roughly the last tier, so O(bC*/)

 Is it complete?
 Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

 Is it optimal?
 Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c 3

c 2

c 1

Uniform Cost Issues

 Remember: UCS explores increasing cost
contours

 The good: UCS is complete and optimal!

 The bad:
 Explores options in every “direction”
 No information about goal location

 We’ll fix that soon!

Start Goal

…

c 3

c 2

c 1

Search Heuristics

 A heuristic is:
 A function that estimates how close a state is to a goal

 Maps a state to a number

 Designed for a particular search problem

 Example: Manhattan distance for pathing

 Example: Euclidean distance for pathing

10

5

11.2

Greedy Search

 Strategy: expand a node that you think is
closest to a goal state
 Heuristic: estimate of distance to nearest goal for

each state

 A common case:

 Best-first takes you straight to the (wrong) goal

 Worst-case: like a badly-guided DFS

…
b

…
b

Combining UCS and Greedy

 Uniform-cost orders by path cost, or backward cost g(n)

 Greedy orders by goal proximity, or forward cost h(n)

 A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

e d

d G

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

 Should we stop when we enqueue a goal?

 No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0 h = 3

Admissible Heuristics

 A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

 Examples:

 Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4
15

Trivial Heuristics, Dominance

 Dominance: ha ≥ hc if

 Heuristics form a semi-lattice:
 Max of admissible heuristics is admissible

 Trivial heuristics
 Bottom of lattice is the zero heuristic (what

does this give us?)

 Top of lattice is the exact heuristic

Consistency of Heuristics

 Main idea: estimated heuristic costs ≤ actual costs

 Admissibility: heuristic cost ≤ actual cost to goal

 h(A) ≤ actual cost from A to G

 Consistency: heuristic “arc” cost ≤ actual cost for each arc

 h(A) – h(C) ≤ cost(A to C)

 Consequences of consistency:

 The f value along a path never decreases

 h(A) ≤ cost(A to C) + h(C)

 A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Optimality

 Tree search:
 A* is optimal if heuristic is admissible
 UCS is a special case (h = 0)

 Graph search:

 A* optimal if heuristic is consistent
 UCS optimal (h = 0 is consistent)

 Consistency implies admissibility

 In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

Constraint Satisfaction Problems

 Standard search problems:
 State is a “black box”: arbitrary data structure
 Goal test can be any function over states
 Successor function can also be anything

 Constraint satisfaction problems (CSPs):
 A special subset of search problems

 State is defined by variables Xi with values from a
domain D (sometimes D depends on i)

 Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

 Simple example of a formal representation language

 Allows useful general-purpose algorithms with more

power than standard search algorithms

Constraint Graphs

 Binary CSP: each constraint relates (at most) two
variables

 Binary constraint graph: nodes are variables, arcs
show constraints

 General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Backtracking Search

 Backtracking search is the basic uninformed algorithm for solving CSPs

 Idea 1: One variable at a time
 Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 Only need to consider assignments to a single variable at each step

 Idea 2: Check constraints as you go
 I.e. consider only values which do not conflict previous assignments
 Might have to do some computation to check the constraints
 “Incremental goal test”

 Depth-first search with these two improvements
 is called backtracking search (not the best name)

 Can solve n-queens for n 25

 Filtering: Keep track of domains for unassigned variables and cross off bad options

 Forward checking: Cross off values that violate a constraint when added to the existing
assignment

Forward Checking

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

Consistency of A Single Arc

 An arc X Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

 Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V

Arc Consistency of an Entire CSP

 A simple form of propagation makes sure all arcs are consistent:

 Important: If X loses a value, neighbors of X need to be rechecked!
 Arc consistency detects failure earlier than forward checking
 Can be run as a preprocessor or after each assignment
 What’s the downside of enforcing arc consistency?

Remember:
Delete from

the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Ordering: Minimum Remaining Values

 Variable Ordering: Minimum remaining values (MRV):

 Choose the variable with the fewest legal left values in its domain

 Why min rather than max?

 Also called “most constrained variable”

 “Fail-fast” ordering

Ordering: Least Constraining Value

 Value Ordering: Least Constraining Value
 Given a choice of variable, choose the least

constraining value

 I.e., the one that rules out the fewest values in
the remaining variables

 Note that it may take some computation to
determine this! (E.g., rerunning filtering)

 Why least rather than most?

 Combining these ordering ideas makes
 1000 queens feasible

Tree-Structured CSPs

 Algorithm for tree-structured CSPs:
 Order: Choose a root variable, order variables so that parents precede children

 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

 Runtime: O(n d2) (why?)

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

O(finding minimal cutset)? NP-hard

Local Search

 Tree search keeps unexplored alternatives on the fringe (ensures completeness)

 Local search: improve a single option until you can’t make it better (no fringe!)

 New successor function: local changes

 Generally much faster and more memory efficient (but incomplete and suboptimal)

Iterative Algorithms for CSPs

 Local search methods typically work with “complete” states, i.e., all variables assigned

 To apply to CSPs:
 Take an assignment with unsatisfied constraints
 Operators reassign variable values
 No fringe! Live on the edge.

 Algorithm: While not solved,

 Variable selection: randomly select any conflicted variable
 Value selection: min-conflicts heuristic:

 Choose a value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

Hill Climbing Diagram

Adversarial Search (Minimax)

 Deterministic, zero-sum games:

 Tic-tac-toe, chess, checkers

 One player maximizes result

 The other minimizes result

 Minimax search:

 A state-space search tree

 Players alternate turns

 Compute each node’s minimax value:
the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min 2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Evaluation Functions

 Evaluation functions score non-terminals in depth-limited search

 Ideal function: returns the actual minimax value of the position
 In practice: typically weighted linear sum of features:

 e.g. f1(s) = (num white queens – num black queens), etc.

Minimax Example

12 8 5 2 3 2 14 4 6

Minimax Pruning

12 8 5 2 3 2 14

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞

for each successor of state:
v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞

for each successor of state:
v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Properties

 This pruning has no effect on minimax value computed for the root!

 Values of intermediate nodes might be wrong
 Important: children of the root may have the wrong value

 So the most naïve version won’t let you do action selection

 Good child ordering improves effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)

 Doubles solvable depth!

 Full search of, e.g. chess, is still hopeless…

 This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Expectimax Search

 Why wouldn’t we know what the result of an action will be?
 Explicit randomness: rolling dice
 Unpredictable opponents: the ghosts respond randomly
 Actions can fail: when moving a robot, wheels might slip

 Values should now reflect average-case (expectimax)

outcomes, not worst-case (minimax) outcomes

 Expectimax search: compute the average score under
optimal play
 Max nodes as in minimax search
 Chance nodes are like min nodes but the outcome is uncertain
 Calculate their expected utilities
 I.e. take weighted average (expectation) of children

 Later, we’ll learn how to formalize the underlying uncertain-

result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

[Demo: min vs exp (L7D1,2)]

Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:
 p = probability(successor)

v += p * value(successor)
return v

5 7 8 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Utilities

 Utilities are functions from outcomes
(states of the world) to real numbers
that describe an agent’s preferences

 Where do utilities come from?
 In a game, may be simple (+1/-1)
 Utilities summarize the agent’s goals
 Theorem: any “rational” preferences can

be summarized as a utility function

 We hard-wire utilities and let
behaviors emerge
 Why don’t we let agents pick utilities?
 Why don’t we prescribe behaviors?

Preferences

 An agent must have preferences among:

 Prizes: A, B, etc.

 Lotteries: situations with uncertain prizes

 Notation:
 Preference:

 Indifference:

A B

p 1-p

 A Lottery A Prize

A

Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality

 Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 Given any preferences satisfying these constraints, there exists a real-valued
 function U such that:

 I.e. values assigned by U preserve preferences of both prizes and lotteries!

 Maximum expected utility (MEU) principle:
 Choose the action that maximizes expected utility
 Note: an agent can be entirely rational (consistent with MEU) without ever representing or

manipulating utilities and probabilities
 E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

MEU Principle

Markov Decision Processes

 An MDP is defined by:
 A set of states s S
 A set of actions a A
 A transition function T(s, a, s’)

 Probability that a from s leads to s’, i.e., P(s’| s, a)
 Also called the model or the dynamics

 A reward function R(s, a, s’)
 Sometimes just R(s) or R(s’)

 A start state
 Maybe a terminal state

 MDPs are non-deterministic search problems

 One way to solve them is with expectimax search
 We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

 In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

 For MDPs, we want an optimal policy *: S → A
 A policy gives an action for each state

 An optimal policy is one that maximizes
expected utility if followed

 An explicit policy defines a reflex agent

 Expectimax didn’t compute entire policies
 It computed the action for a single state only

Discounting

 How to discount?
 Each time we descend a level, we

multiply in the discount once

 Why discount?
 Sooner rewards probably do have

higher utility than later rewards

 Also helps our algorithms converge

 Example: discount of 0.5
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

 U([1,2,3]) < U([3,2,1])

Values of States

 Fundamental operation: compute the (expectimax) value of a state

 Expected utility under optimal action

 Average sum of (discounted) rewards

 This is just what expectimax computed!

 Recursive definition of value:

a

s

s, a

s,a,s’

s’

Value Iteration

 Start with V0(s) = 0: no time steps left means an expected reward sum of zero

 Given vector of Vk(s) values, do one ply of expectimax from each state:

 Repeat until convergence

 Complexity of each iteration: O(S2A)

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Policy Evaluation

 How do we calculate the V’s for a fixed policy ?

 Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

 Efficiency: O(S2) per iteration

 Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

(s)

s

s, (s)

s, (s),s’

s’

Policy Extraction

 Let’s imagine we have the optimal values V*(s)

 How should we act?

 It’s not obvious!

 We need to do a mini-expectimax (one step)

 This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

 Let’s imagine we have the optimal q-values:

 How should we act?

 Completely trivial to decide!

 Important lesson: actions are easier to select from q-values than values!

Policy Iteration

 Evaluation: For fixed current policy , find values with policy evaluation:
 Iterate until values converge:

 Improvement: For fixed values, get a better policy using policy extraction
 One-step look-ahead:

Reinforcement Learning

 Still assume a Markov decision process (MDP):

 A set of states s S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

 Still looking for a policy (s)

 New twist: don’t know T or R

 I.e. we don’t know which states are good or what the actions do

 Must actually try actions and states out to learn

Q-Learning

 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go

 Receive a sample (s,a,s’,r)

 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

How to Explore?

 Several schemes for forcing exploration
 Simplest: random actions (-greedy)

 Every time step, flip a coin

 With (small) probability , act randomly

 With (large) probability 1-, act on current policy

 Problems with random actions?
 You do eventually explore the space, but keep

thrashing around once learning is done

 One solution: lower over time

 Another solution: exploration functions

 [Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Approximate Q-Learning

 Q-learning with linear Q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s

