Search Problems

= A search problem consists of:

e 8 D I O

= A successor function N 1.0 u

(WItII actiot 1S, COStS)
\ !
“E”, 1.0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122%)x4
= States for pathing?
120
= States for eat-all-dots?
120x(239)

Searching with a Search Tree

Arad

CAad > CFagaras> COradea> @iricu Vie)

= Search:
* Expand out potential plans (tree nodes)
" Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe <= INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe < INSERT(child-node, fringe)

end

end

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Important: Lots of repeated structure in the search tree!

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed +— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search (DFS) Properties

= What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
. m tiers <
" How much space does the fringe take?
= Only has siblings on path to root, so O(bm)
" |sitcomplete? b™ nodes

= m could be infinite, so only if we prevent
cycles (more later)

" [sitoptimal?

= No, it finds the “leftmost” solution,
regardless of depth or cost

Strategy: expand a
shallowest node first

Implementation: Fringe

Breadth-First Search

is a FIFO queue
-

©)
Search |
< © ® ® © @

Tiers | N PN |

a h r p q f

N | | RN

_ qg f q (ll G

PN .

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?
= Processes all nodes above shallowest solution b 1 node
= Let depth of shallowest solution be s b nodes

_ . s tiers < ,
= Search takes time O(b?®) b2 nodes

* How much space does the fringe take? - / o \ bs nodes
= Has roughly the last tier, so O(b®)

" |sit complete? o b™ nodes
= s must be finite if a solution exists, so yes!

" |sit optimal?
= Only if costs are all 1 (more on costs later)

Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

" [sn’t that wastefully redundant?

= Generally most work happens in the lowest
level searched, so not so bad!

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least g, then the
“effective depth” is roughly C*/¢

C*le “tiers” <
= Takes time O(b®"¢) (exponential in effective depth)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®"¢)

M)
O/

" |sitcomplete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

" [sitoptimal?

= Yes! (Proof next lecture via A*)

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

" The good: UCS is complete and optimall!

= The bad:

= Explores options in every “direction”
= No information about goal location

= \We'll fix that soon!

Search Heuristics

= A heuristic is:

A function that estimates how close a state is to a goal
Maps a state to a number

Designed for a particular search problem

Example: Manhattan distance for pathing

Example: Euclidean distance for pathing

=

S ——

 —

Heuriski - Tron

< ---f l

>

e

|

Heurlsti - Tron

A

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

h=1

= No: only stop when we dequeue a goal

Admissible Heuristics
= A heuristic h is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Trivial Heuristics, Dominance

= Dominance: h, > h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

max(hg, hy)

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost fromAto G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality

Tree search:
= A* s optimal if heuristic is admissible
= UCS s a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

Constraint Satisfaction Problems

Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

Constraint satisfaction problems (CSPs):
= A special subset of search problems

= State is defined by variables X; with values from a
domain D (sometimes D depends on 1)

= Goal testis a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

Constraint Graphs

= Binary CSP: each constraint relates (at most) two
variables

" Binary constraint graph: nodes are variables, arcs
show constraints

" General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assignments are commutative, so fix ordering
= |.e., [WA=redthen NT =green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to check the constraint
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
WA NT| qQ
SA NSW.
Vv

WA NT Q NSW \' SA

[Demo: coloring -- forward checking]

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint
NSW

e
O

@ Delete from the tail!

NT WA NT Q NSW \ SA
Q

3 I I I I Irer

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

4

WA NT Q NSW Y SA
I | 1 [m E[ErN] 1

0

®
" |mportant: If X loses a value, neighbors of X need to be rechecked!
= Arc consistency detects failure earlier than forward checking Remember-
= Can be run as a preprocessor or after each assignment Delete from
= What's the downside of enforcing arc consistency? the tail!

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xo, ..., X, }
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(Xi, X;) <~ REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;. X;) then
for each X in NEIGHBORS[X] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «+— false
for each r in DOMAIN[X,] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; «» X
then delete 2 from DOMAIN[X}]; removed « true
return removed

= Runtime: O(n%d3), can be reduced to O(n?d?)
= .. but detecting all possible future problems is NP-hard — why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Ordering: Minimum Remaining Values

Variable Ordering: Minimum remaining values (MRV):
* Choose the variable with the fewest legal left values in its domain

SSs SSll SSEA o

Why min rather than max?
Also called “most constrained variable”
“Fail-fast” ordering

Ordering: Least Constraining Value

" Value Ordering: Least Constraining Value
= @Given a choice of variable, choose the least “_Lt:

constraining value
" |.e., the one that rules out the fewest values in ‘_Lb

the remaining variables

= Note that it may take some computation to ‘ ’:

determine this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

2

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X,),X.)
= Assign forward: For i =1:n, assign X, consistently with Parent(X))

= Runtime: O(n d?) (why?)

Cutset Conditioning

Choose a cutset

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

=
[J O () O
==
e

-

O(finding minimal cutset)? NP-hard

Local Search

= Tree search keeps unexplored alternatives on the fringe (ensures completeness)
" Local search: improve a single option until you can’t make it better (no fringe!)

= New successor function: local changes

O

1999

= Generally much faster and more memory efficient (but incomplete and suboptimal)

Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

" To apply to CSPs:

= Take an assignment with unsatisfied constraints
= QOperators reassign variable values
= No fringe! Live on the edge.

0 00

= Algorithm: While not solved,

= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:

= Choose a value that violates the fewest constraints

= |.e., hill climb with h(n) = total number of violated constraints

Hill Climbing Diagram

objective function qlobal maximum

shoulder

\ local maximum

"flat" local maximum

state space
curren

state

Adversarial Search (Minimax)

= Deterministic, zero-sum games: Minimax values:

= Tic-tac-toe, chess, checkers - computed recursively ~N

" One player maximizes result max

= The other minimizes result

min

= Minimax search: _ J

= A state-space search tree / \ / \

= Players alternate turns y \ J \

» Compute each node’s minimax value: { & 2 2 ° J

the best achievable utility against a

. : Terminal values:
rational (optimal) adversary

part of the game

Evaluation Functions

= Evaluation functions score non-terminals in depth-limited search

Black to move . AN White to move

White slightly better Black winning

" |deal function: returns the actual minimax value of the position
" |n practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s) +wafo(s) + ...+ wnfn(s)

= e.g. f,(S) = (num white queens — num black queens), etc.

Minimax Example

12

Minimax Pruning

14

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

~

/def max-value(state, a, B):

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, B))
if v> B returnv
a = max(a, v)

\ return v /

¢

ef min-value(state, a, B):

initialize v = +oo

for each successor of state:
v = min(v, value(successor, a, B))
ifv<areturnv

B =min(pB, v)

~

\ return v /

Alpha-Beta Pruning Properties

This pruning has no effect on minimax value computed for the root!

Values of intermediate nodes might be wrong
= |mportant: children of the root may have the wrong value
= So the most naive version won’t let you do action selection

Good child ordering improves effectiveness of pruning

With “perfect ordering”:
= Time complexity drops to O(b™/2)
= Doubles solvable depth!
= Full search of, e.g. chess, is still hopeless...

This is a simple example of metareasoning (computing about what to compute)

10

Mmax

min

10

Expectimax Search

Why wouldn’t we know what the result of an action will be?
= Explicit randomness: rolling dice
= Unpredictable opponents: the ghosts respond randomly
= Actions can fail: when moving a robot, wheels might slip

Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

Expectimax search: compute the average score under
optimal play
= Max nodes as in minimax search
= Chance nodes are like min nodes but the outcome is uncertain
= Calculate their expected utilities
= |.e.take weighted average (expectation) of children

Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10

10

maXx

chance

9 100

[Demo: min vs exp (L7D1,2)]

Expectimax Pseudocode

/def exp-value(state):
initialize v=0

~

for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v

1/2

/

1/3

v=(1/2)(8)+(1/3) (24) + (1/6) (-12) = 10

1/6

-12

Utilities

= Utilities are functions from outcomes
(states of the world) to real numbers
that describe an agent’s preferences

= Where do utilities come from?

= |n a game, may be simple (+1/-1)
= Utilities summarize the agent’s goals

= Theorem: any “rational” preferences can
be summarized as a utility function

* We hard-wire utilities and let
behaviors emerge
= Why don’t we let agents pick utilities?
= Why don’t we prescribe behaviors?

Preferences

An agent must have preferences among:
= Prizes: A, B, etc.

= |otteries: situations with uncertain prizes

L =|p,A; (1 —p),B]

Notation:

= Preference: A - B
» |ndifference: A ~ B

A Prize

A Lottery

-

Rational Preferences

The Axioms of Rationality

[Orderability \

(A-=B)v(B»=A)V (A~ B)
Transitivity

(A-B)AN(B>C)=(A>C)
Continuity A\

A=-B>=C=3p [p,A; 1—p,C]~B
Substitutability

A~B=[p,A; 1—p,C]~[p,B;1—p,C]
Monotonicity

A>=B=

> A, 1—p, Bl > g, A, 1 —¢q,B —
_ (r=qg<[p p, B] = [q q])/

Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

* Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

= Given any preferences satisfying these constraints, there exists a real-valued
function U such that:

U(A) > U(B) < A B
U(lp1,S1; --- ; pn,Sn]) = >; p;U(S;)

= |.e.values assigned by U preserve preferences of both prizes and lotteries!

= Maximum expected utility (MEU) principle:
= Choose the action that maximizes expected utility

= Note: an agent can be entirely rational (consistent with MEU) without ever representing or
manipulating utilities and probabilities

= E.g., alookup table for perfect tic-tac-toe, a reflex vacuum cleaner

Markov Decision Processes

An MDP is defined by:

m Asetofstatess €S
m AsetofactionsaceA
= A transition function T(s, a, s’)

= Probability that a from sleadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We’ll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy t*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies

= |t computed the action for a single state only

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Values of States

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s,a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)]

V*i(s) = mCELBXZT(S, a,s’) {R(s,a, ") + ’)/V*(S')}

S

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) <+ mC?XZT(S, a,s’) {R(s,a, s + W/Vk(sl)}

S

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Policy Evaluation

How do we calculate the V’s for a fixed policy nt?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vg (s) =0 sls)s
Vi1 (s) = S T(s,m(s),) R(s, (s), ") + Vi ()]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

= Let’s imagine we have the optimal values V*(s)

= How should we act?

= |t’s not obvious!

= We need to do a mini-expectimax (one step)

7*(s) = arg canaXZT(S’ a,s')[R(s,a,s) +~vV*(s)]

S

= This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values: MW
NN VAN
= How should we act? W.W
= Completely trivial to decide! E !

¥ (s) = arg max Q*(s, a) %%

" |[mportant lesson: actions are easier to select from g-values than values!

Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:

= [terate until values converge:

Vkﬁ_'i'_l(g) — > T(s,m(s),s") [R(s, mi(s),s") + Vkm(sl)}

=" |mprovement: For fixed values, get a better policy using policy extraction

= One-step look-ahead:

mi4+1(s) = arg maXZT(s, a,s’) [R(s, a,s’) + ’yV”Ti(SI)}

S

Reinforcement Learning

= Still assume a Markov decision process (MDP):

= Asetof statess €S
= A set of actions (per state) A

= A model T(s,a,s’)

= Areward function R(s,a,s’)

Overheated

= Still looking for a policy m(s)

= New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Q-Learning

"= Q-Learning: sample-based Q-value iteration

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a')

" Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) +~ max Q(s', a")

a

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

How to Explore?

= Several schemes for forcing exploration

* Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-g, act on current policy

= Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Approximate Q-Learning

QUs,0) = wifi(s @) bwafals,)+ Aunfals,a)

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,Ob)
Q(s,a) — Q(s,a) + o [difference] Exact Q's

difference = [7" + v max Q(s',a")
a

w; +— w; + « [difference] f;(s,a) Approximate Q’s

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares

