
Search Problems 

 A search problem consists of: 
 

 A state space 
 
 

 A successor function 
 (with actions, costs) 

 
 

 A start state and a goal test 
 

 A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state 

“N”, 1.0 

“E”, 1.0 



State Space Sizes? 

 World state: 
 Agent positions: 120 

 Food count: 30 

 Ghost positions: 12 

 Agent facing: NSEW 
 

 How many 
 World states? 

 120x(230)x(122)x4 

 States for pathing? 

 120 

 States for eat-all-dots? 

 120x(230) 

 



Searching with a Search Tree 

 Search: 
 Expand out potential plans (tree nodes) 

 Maintain a fringe of partial plans under consideration 

 Try to expand as few tree nodes as possible 



Tree Search Pseudo-Code 



Quiz: State Space Graphs vs. Search Trees 

S G 

b 

a 

Consider this 4-state graph:  

Important: Lots of repeated structure in the search tree! 

How big is its search tree (from S)? 



Graph Search Pseudo-Code 



Depth-First Search 
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Strategy: expand a 
deepest node first 

Implementation: 
Fringe is a LIFO stack 



Depth-First Search (DFS) Properties 

… 
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1 node 

b nodes 

b2 nodes 

bm nodes 

m tiers 

 What nodes DFS expand? 
 Some left prefix of the tree. 

 Could process the whole tree! 

 If m is finite, takes time O(bm) 
 

 How much space does the fringe take? 
 Only has siblings on path to root, so O(bm) 

 

 Is it complete? 
 m could be infinite, so only if we prevent 

cycles (more later) 
 

 Is it optimal? 
 No, it finds the “leftmost” solution, 

regardless of depth or cost 

 



Breadth-First Search 
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Strategy: expand a 
shallowest node first 

Implementation: Fringe 
is a FIFO queue 



Breadth-First Search (BFS) Properties 

 What nodes does BFS expand? 
 Processes all nodes above shallowest solution 

 Let depth of shallowest solution be s 

 Search takes time O(bs) 
 

 How much space does the fringe take? 
 Has roughly the last tier, so O(bs) 

 

 Is it complete? 
 s must be finite if a solution exists, so yes! 

 

 Is it optimal? 
 Only if costs are all 1 (more on costs later) 
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Iterative Deepening 

… 
b 

 Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages 

 Run a DFS with depth limit 1.  If no solution… 

 Run a DFS with depth limit 2.  If no solution… 

 Run a DFS with depth limit 3.  ….. 

 

 Isn’t that wastefully redundant? 

 Generally most work happens in the lowest 
level searched, so not so bad! 



Uniform Cost Search 
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Strategy: expand a 

cheapest node first: 

Fringe is a priority queue 

(priority: cumulative cost) 
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… 

Uniform Cost Search (UCS) Properties 

 What nodes does UCS expand? 
 Processes all nodes with cost less than cheapest solution! 

 If that solution costs C* and arcs cost at least  , then the 
“effective depth” is roughly C*/ 

 Takes time O(bC*/) (exponential in effective depth) 
 

 How much space does the fringe take? 
 Has roughly the last tier, so O(bC*/) 

 

 Is it complete? 
 Assuming best solution has a finite cost and minimum arc cost 

is positive, yes! 
 

 Is it optimal? 
 Yes!  (Proof next lecture via A*) 

 

b 

C*/  “tiers” 
c  3 

c  2 
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Uniform Cost Issues 

 Remember: UCS explores increasing cost 
contours 

 
 

 The good: UCS is complete and optimal! 
 
 

 The bad: 
 Explores options in every “direction” 
 No information about goal location 

 
 

 We’ll fix that soon! 
 

Start Goal 
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Search Heuristics 

 A heuristic is: 
 A function that estimates how close a state is to a goal 

 Maps a state to a number 

 Designed for a particular search problem 

 Example: Manhattan distance for pathing 

 Example: Euclidean distance for pathing 
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Greedy Search 

 Strategy: expand a node that you think is 
closest to a goal state 
 Heuristic: estimate of distance to nearest goal for 

each state 
 

 
 A common case: 

 Best-first takes you straight to the (wrong) goal 
 
 

 
 Worst-case: like a badly-guided DFS 
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Combining UCS and Greedy 

 Uniform-cost orders by path cost, or backward cost  g(n) 

 Greedy orders by goal proximity, or forward cost  h(n) 

 

 

 

 

 

 

 

 

 

 

 A* Search orders by the sum: f(n) = g(n) + h(n) 
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When should A* terminate? 

 Should we stop when we enqueue a goal? 

 

 

 

 

 

 

 No: only stop when we dequeue a goal 
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Admissible Heuristics 

 A heuristic h is admissible (optimistic) if: 

 

 

 where               is the true cost to a nearest goal 
 

 Examples: 

 

 

 Coming up with admissible heuristics is most of what’s involved 
in using A* in practice. 
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Trivial Heuristics, Dominance 

 Dominance: ha ≥ hc if 

 

 

 Heuristics form a semi-lattice: 
 Max of admissible heuristics is admissible 

 

 

 

 Trivial heuristics 
 Bottom of lattice is the zero heuristic (what 

does this give us?) 

 Top of lattice is the exact heuristic 



Consistency of Heuristics 

 Main idea: estimated heuristic costs ≤ actual costs 

 Admissibility: heuristic cost ≤ actual cost to goal 

  h(A) ≤ actual cost from A to G 

 Consistency: heuristic “arc” cost ≤ actual cost for each arc 

  h(A) – h(C) ≤ cost(A to C) 
 

 Consequences of consistency: 

 The f value along a path never decreases 

   h(A) ≤ cost(A to C) + h(C) 

 A* graph search is optimal 
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Optimality 

 Tree search: 
 A* is optimal if heuristic is admissible 
 UCS is a special case (h = 0) 

 
 Graph search: 

 A* optimal if heuristic is consistent 
 UCS optimal (h = 0 is consistent) 

 

 Consistency implies admissibility 
 

 In general, most natural admissible heuristics 
tend to be consistent, especially if from 
relaxed problems 



Constraint Satisfaction Problems 

 Standard search problems: 
 State is a “black box”: arbitrary data structure 
 Goal test can be any function over states 
 Successor function can also be anything 

 

 Constraint satisfaction problems (CSPs): 
 A special subset of search problems 

 State is defined by variables Xi  with values from a 
domain D (sometimes D depends on i) 

 Goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables 

 
 Simple example of a formal representation language 

 
 Allows useful general-purpose algorithms with more 

power than standard search algorithms 
 



Constraint Graphs 

 Binary CSP: each constraint relates (at most) two 
variables 

 

 Binary constraint graph: nodes are variables, arcs 
show constraints 

 

 General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem! 



Backtracking Search 

 Backtracking search is the basic uninformed algorithm for solving CSPs 
 

 Idea 1: One variable at a time 
 Variable assignments are commutative, so fix ordering 
 I.e., [WA = red then NT = green] same as [NT = green then WA = red] 
 Only need to consider assignments to a single variable at each step 

 

 Idea 2: Check constraints as you go 
 I.e. consider only values which do not conflict previous assignments 
 Might have to do some computation to check the constraints 
 “Incremental goal test” 

 

 Depth-first search with these two improvements 
 is called backtracking search (not the best name) 

 

 Can solve n-queens for n  25 



 Filtering: Keep track of domains for unassigned variables and cross off bad options 

 Forward checking: Cross off values that violate a constraint when added to the existing 
assignment 

Forward Checking 

WA 
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V 

[Demo: coloring -- forward checking] 



Consistency of A Single Arc 

 An arc X  Y is consistent iff for every x in the tail there is some y in the head which 
could be assigned without violating a constraint 
 
 
 
 
 
 
 
 
 

 
 

 Forward checking: Enforcing consistency of arcs pointing to each new assignment 

Delete from the tail! 
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Arc Consistency of an Entire CSP 

 A simple form of propagation makes sure all arcs are consistent: 
 
 
 
 
 
 
 

 
 Important: If X loses a value, neighbors of X need to be rechecked! 
 Arc consistency detects failure earlier than forward checking 
 Can be run as a preprocessor or after each assignment  
 What’s the downside of enforcing arc consistency? 

Remember:  
Delete from  

the tail! 
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Enforcing Arc Consistency in a CSP 

 Runtime: O(n2d3), can be reduced to O(n2d2) 
 … but detecting all possible future problems is NP-hard – why? 

[Demo: CSP applet (made available by aispace.org) -- n-queens] 



Ordering: Minimum Remaining Values 

 Variable Ordering: Minimum remaining values (MRV): 

 Choose the variable with the fewest legal left values in its domain 

 

 

 

 

 

 Why min rather than max? 

 Also called “most constrained variable” 

 “Fail-fast” ordering 



Ordering: Least Constraining Value 

 Value Ordering: Least Constraining Value 
 Given a choice of variable, choose the least 

constraining value 

 I.e., the one that rules out the fewest values in 
the remaining variables 

 Note that it may take some computation to 
determine this!  (E.g., rerunning filtering) 

 

 Why least rather than most? 

 

 Combining these ordering ideas makes 
 1000 queens feasible 



Tree-Structured CSPs 

 Algorithm for tree-structured CSPs: 
 Order: Choose a root variable, order variables so that parents precede children 

 
 
 
 
 
 
 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi) 
 Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi) 

 

 Runtime: O(n d2)  (why?) 



Cutset Conditioning 

SA 

SA SA SA 

Instantiate the cutset 
(all possible ways) 

Compute residual CSP 
for each assignment 

Solve the residual CSPs 
(tree structured) 

Choose a cutset 

O(finding minimal cutset)? NP-hard 



Local Search 

 Tree search keeps unexplored alternatives on the fringe (ensures completeness) 

 

 Local search: improve a single option until you can’t make it better (no fringe!) 

 

 New successor function: local changes 

 

 

 

 

 

 Generally much faster and more memory efficient (but incomplete and suboptimal) 



Iterative Algorithms for CSPs 

 Local search methods typically work with “complete” states, i.e., all variables assigned 
 

 To apply to CSPs: 
 Take an assignment with unsatisfied constraints 
 Operators reassign variable values 
 No fringe!  Live on the edge. 

 
 Algorithm: While not solved, 

 Variable selection: randomly select any conflicted variable 
 Value selection: min-conflicts heuristic: 

 Choose a value that violates the fewest constraints 
 I.e., hill climb with h(n) = total number of violated constraints 



Hill Climbing Diagram 



Adversarial Search (Minimax) 

 Deterministic, zero-sum games: 

 Tic-tac-toe, chess, checkers 

 One player maximizes result 

 The other minimizes result 

 

 Minimax search: 

 A state-space search tree 

 Players alternate turns 

 Compute each node’s minimax value: 
the best achievable utility against a 
rational (optimal) adversary 

8 2 5 6 

max 
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5 

Terminal values: 
part of the game  

Minimax values: 
computed recursively 



Evaluation Functions 

 Evaluation functions score non-terminals in depth-limited search 
 
 
 
 
 
 
 
 

 Ideal function: returns the actual minimax value of the position 
 In practice: typically weighted linear sum of features: 

 
 

 e.g.  f1(s) = (num white queens – num black queens), etc. 



Minimax Example 

12 8 5 2 3 2 14 4 6 



Minimax Pruning 

12 8 5 2 3 2 14 



Alpha-Beta Implementation 

def min-value(state , α, β): 
initialize v = +∞ 

for each successor of state: 
v = min(v, value(successor, α, β)) 
if v ≤ α return v 
β = min(β, v) 

return v 

 

def max-value(state, α, β): 
initialize v = -∞ 

for each successor of state: 
v = max(v, value(successor, α, β)) 
if v ≥ β return v 
α = max(α, v) 

return v 

α: MAX’s best option on path to root 
β: MIN’s best option on path to root 



Alpha-Beta Pruning Properties 

 This pruning has no effect on minimax value computed for the root! 
 

 Values of intermediate nodes might be wrong 
 Important: children of the root may have the wrong value 

 So the most naïve version won’t let you do action selection 

 

 Good child ordering improves effectiveness of pruning 
 

 With “perfect ordering”: 
 Time complexity drops to O(bm/2) 

 Doubles solvable depth! 

 Full search of, e.g. chess, is still hopeless… 

 

 This is a simple example of metareasoning (computing about what to compute) 

10 10 0 

max 

min 



Expectimax Search 

 Why wouldn’t we know what the result of an action will be? 
 Explicit randomness: rolling dice 
 Unpredictable opponents: the ghosts respond randomly 
 Actions can fail: when moving a robot, wheels might slip 

 
 Values should now reflect average-case (expectimax) 

outcomes, not worst-case (minimax) outcomes 
 

 Expectimax search: compute the average score under 
optimal play 
 Max nodes as in minimax search 
 Chance nodes are like min nodes but the outcome is uncertain 
 Calculate their expected utilities 
 I.e. take weighted average (expectation) of children 

 
 Later, we’ll learn how to formalize the underlying uncertain-

result problems as Markov Decision Processes 

10 4 5 7 
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[Demo: min vs exp (L7D1,2)] 



Expectimax Pseudocode 

def exp-value(state): 
initialize v = 0 
for each successor of state: 
  p = probability(successor) 

v += p * value(successor) 
return v 
 

5 7 8 24 -12 

1/2 
1/3 

1/6 

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10 



Utilities 

 Utilities are functions from outcomes 
(states of the world) to real numbers 
that describe an agent’s preferences 

 

 Where do utilities come from? 
 In a game, may be simple (+1/-1) 
 Utilities summarize the agent’s goals 
 Theorem: any “rational” preferences can 

be summarized as a utility function 
 

 We hard-wire utilities and let 
behaviors emerge 
 Why don’t we let agents pick utilities? 
 Why don’t we prescribe behaviors? 

 



Preferences 

 An agent must have preferences among: 

 Prizes: A, B, etc. 

 Lotteries: situations with uncertain prizes 

 
 

 

 Notation: 
 Preference: 

 Indifference: 

 

A                  B 

p                1-p 

  A Lottery   A Prize 

A 



Rational Preferences 

Theorem: Rational preferences imply behavior describable as maximization of expected utility 

The Axioms of Rationality 



 Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944] 
 Given any preferences satisfying these constraints, there exists a real-valued 
 function U such that: 

 
 
 
 
 

 I.e. values assigned by U preserve preferences of both prizes and lotteries! 
 
 

 Maximum expected utility (MEU) principle: 
 Choose the action that maximizes expected utility 
 Note: an agent can be entirely rational (consistent with MEU) without ever representing or 

manipulating utilities and probabilities 
 E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner 

MEU Principle 



Markov Decision Processes 

 An MDP is defined by: 
 A set of states s  S 
 A set of actions a  A 
 A transition function T(s, a, s’) 

 Probability that a from s leads to s’, i.e., P(s’| s, a) 
 Also called the model or the dynamics 

 A reward function R(s, a, s’)  
 Sometimes just R(s) or R(s’) 

 A start state 
 Maybe a terminal state 

 
 MDPs are non-deterministic search problems 

 One way to solve them is with expectimax search 
 We’ll have a new tool soon 

[Demo – gridworld manual intro (L8D1)] 



Policies 

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s 

 In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal 

 

 For MDPs, we want an optimal policy *: S → A 
 A policy  gives an action for each state 

 An optimal policy is one that maximizes        
expected utility if followed 

 An explicit policy defines a reflex agent 

 

 Expectimax didn’t compute entire policies 
 It computed the action for a single state only 

 



Discounting 

 How to discount? 
 Each time we descend a level, we 

multiply in the discount once 

 

 Why discount? 
 Sooner rewards probably do have 

higher utility than later rewards 

 Also helps our algorithms converge 

 

 Example: discount of 0.5 
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 

 U([1,2,3]) < U([3,2,1]) 



Values of States 

 Fundamental operation: compute the (expectimax) value of a state 

 Expected utility under optimal action 

 Average sum of (discounted) rewards 

 This is just what expectimax computed! 

 

 Recursive definition of value: 
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s 

s, a 

s,a,s’ 

s’ 



Value Iteration 

 Start with V0(s) = 0: no time steps left means an expected reward sum of zero 
 

 Given vector of Vk(s) values, do one ply of expectimax from each state: 
 
 
 
 

 Repeat until convergence 
 
 

 Complexity of each iteration: O(S2A) 
 

 Theorem: will converge to unique optimal values 
 Basic idea: approximations get refined towards optimal values 
 Policy may converge long before values do 

a 

Vk+1(s) 

s, a 

s,a,s’ 

Vk(s’) 



Policy Evaluation 

 How do we calculate the V’s for a fixed policy ? 
 

 Idea 1: Turn recursive Bellman equations into updates 
 (like value iteration) 

 
 

 
 
 

 Efficiency: O(S2) per iteration 
 

 Idea 2: Without the maxes, the Bellman equations are just a linear system 
 Solve with Matlab (or your favorite linear system solver) 
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Policy Extraction 

 Let’s imagine we have the optimal values V*(s) 
 

 How should we act? 

 It’s not obvious! 
 

 We need to do a mini-expectimax (one step) 
 

 

 

 

 This is called policy extraction, since it gets the policy implied by the values 

 

 

 

 



Computing Actions from Q-Values 

 Let’s imagine we have the optimal q-values: 

 

 How should we act? 

 Completely trivial to decide! 

 

 

 

 

 

 Important lesson: actions are easier to select from q-values than values! 

 

 

 



Policy Iteration 

 

 Evaluation: For fixed current policy , find values with policy evaluation: 
 Iterate until values converge: 

 

 

 

 Improvement: For fixed values, get a better policy using policy extraction 
 One-step look-ahead: 

 



Reinforcement Learning 

 Still assume a Markov decision process (MDP): 

 A set of states s  S 

 A set of actions (per state) A 

 A model T(s,a,s’) 

 A reward function R(s,a,s’) 

 Still looking for a policy (s) 
 

 New twist: don’t know T or R 

 I.e. we don’t know which states are good or what the actions do 

 Must actually try actions and states out to learn 



Q-Learning 

 Q-Learning: sample-based Q-value iteration 

 

 

 Learn Q(s,a) values as you go 

 Receive a sample (s,a,s’,r) 

 Consider your old estimate: 

 Consider your new sample estimate: 
 

 

 Incorporate the new estimate into a running average: 

[Demo: Q-learning – gridworld (L10D2)] 
[Demo: Q-learning – crawler (L10D3)] 



How to Explore? 

 Several schemes for forcing exploration 
 Simplest: random actions (-greedy) 

 Every time step, flip a coin 

 With (small) probability , act randomly 

 With (large) probability 1-, act on current policy 

 

 Problems with random actions? 
 You do eventually explore the space, but keep 

thrashing around once learning is done 

 One solution: lower  over time 

 Another solution: exploration functions 

 [Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)] 



Approximate Q-Learning 

 Q-learning with linear Q-functions: 
 
 
 
 
 
 

 Intuitive interpretation: 
 Adjust weights of active features 
 E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features 
 

 Formal justification: online least squares 

Exact Q’s 

Approximate Q’s 


