
Search Problems 

 A search problem consists of: 
 

 A state space 
 
 

 A successor function 
 (with actions, costs) 

 
 

 A start state and a goal test 
 

 A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state 

“N”, 1.0 

“E”, 1.0 



State Space Sizes? 

 World state: 
 Agent positions: 120 

 Food count: 30 

 Ghost positions: 12 

 Agent facing: NSEW 
 

 How many 
 World states? 

 120x(230)x(122)x4 

 States for pathing? 

 120 

 States for eat-all-dots? 

 120x(230) 

 



Searching with a Search Tree 

 Search: 
 Expand out potential plans (tree nodes) 

 Maintain a fringe of partial plans under consideration 

 Try to expand as few tree nodes as possible 



Tree Search Pseudo-Code 



Quiz: State Space Graphs vs. Search Trees 

S G 

b 

a 

Consider this 4-state graph:  

Important: Lots of repeated structure in the search tree! 

How big is its search tree (from S)? 



Graph Search Pseudo-Code 



Depth-First Search 
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Strategy: expand a 
deepest node first 

Implementation: 
Fringe is a LIFO stack 



Depth-First Search (DFS) Properties 

… 
b 

1 node 

b nodes 

b2 nodes 

bm nodes 

m tiers 

 What nodes DFS expand? 
 Some left prefix of the tree. 

 Could process the whole tree! 

 If m is finite, takes time O(bm) 
 

 How much space does the fringe take? 
 Only has siblings on path to root, so O(bm) 

 

 Is it complete? 
 m could be infinite, so only if we prevent 

cycles (more later) 
 

 Is it optimal? 
 No, it finds the “leftmost” solution, 

regardless of depth or cost 

 



Breadth-First Search 
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Strategy: expand a 
shallowest node first 

Implementation: Fringe 
is a FIFO queue 



Breadth-First Search (BFS) Properties 

 What nodes does BFS expand? 
 Processes all nodes above shallowest solution 

 Let depth of shallowest solution be s 

 Search takes time O(bs) 
 

 How much space does the fringe take? 
 Has roughly the last tier, so O(bs) 

 

 Is it complete? 
 s must be finite if a solution exists, so yes! 

 

 Is it optimal? 
 Only if costs are all 1 (more on costs later) 

 

… 
b 

1 node 

b nodes 

b2 nodes 

bm nodes 

s tiers 

bs nodes 



Iterative Deepening 

… 
b 

 Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages 

 Run a DFS with depth limit 1.  If no solution… 

 Run a DFS with depth limit 2.  If no solution… 

 Run a DFS with depth limit 3.  ….. 

 

 Isn’t that wastefully redundant? 

 Generally most work happens in the lowest 
level searched, so not so bad! 



Uniform Cost Search 
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Strategy: expand a 

cheapest node first: 

Fringe is a priority queue 

(priority: cumulative cost) 
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… 

Uniform Cost Search (UCS) Properties 

 What nodes does UCS expand? 
 Processes all nodes with cost less than cheapest solution! 

 If that solution costs C* and arcs cost at least  , then the 
“effective depth” is roughly C*/ 

 Takes time O(bC*/) (exponential in effective depth) 
 

 How much space does the fringe take? 
 Has roughly the last tier, so O(bC*/) 

 

 Is it complete? 
 Assuming best solution has a finite cost and minimum arc cost 

is positive, yes! 
 

 Is it optimal? 
 Yes!  (Proof next lecture via A*) 

 

b 

C*/  “tiers” 
c  3 

c  2 

c  1 



Uniform Cost Issues 

 Remember: UCS explores increasing cost 
contours 

 
 

 The good: UCS is complete and optimal! 
 
 

 The bad: 
 Explores options in every “direction” 
 No information about goal location 

 
 

 We’ll fix that soon! 
 

Start Goal 

… 

c  3 

c  2 

c  1 



Search Heuristics 

 A heuristic is: 
 A function that estimates how close a state is to a goal 

 Maps a state to a number 

 Designed for a particular search problem 

 Example: Manhattan distance for pathing 

 Example: Euclidean distance for pathing 

10 

5 

11.2 



Greedy Search 

 Strategy: expand a node that you think is 
closest to a goal state 
 Heuristic: estimate of distance to nearest goal for 

each state 
 

 
 A common case: 

 Best-first takes you straight to the (wrong) goal 
 
 

 
 Worst-case: like a badly-guided DFS 

… 
b 

… 
b 



Combining UCS and Greedy 

 Uniform-cost orders by path cost, or backward cost  g(n) 

 Greedy orders by goal proximity, or forward cost  h(n) 

 

 

 

 

 

 

 

 

 

 

 A* Search orders by the sum: f(n) = g(n) + h(n) 
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When should A* terminate? 

 Should we stop when we enqueue a goal? 

 

 

 

 

 

 

 No: only stop when we dequeue a goal 
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Admissible Heuristics 

 A heuristic h is admissible (optimistic) if: 

 

 

 where               is the true cost to a nearest goal 
 

 Examples: 

 

 

 Coming up with admissible heuristics is most of what’s involved 
in using A* in practice. 

4 
15 



Trivial Heuristics, Dominance 

 Dominance: ha ≥ hc if 

 

 

 Heuristics form a semi-lattice: 
 Max of admissible heuristics is admissible 

 

 

 

 Trivial heuristics 
 Bottom of lattice is the zero heuristic (what 

does this give us?) 

 Top of lattice is the exact heuristic 



Consistency of Heuristics 

 Main idea: estimated heuristic costs ≤ actual costs 

 Admissibility: heuristic cost ≤ actual cost to goal 

  h(A) ≤ actual cost from A to G 

 Consistency: heuristic “arc” cost ≤ actual cost for each arc 

  h(A) – h(C) ≤ cost(A to C) 
 

 Consequences of consistency: 

 The f value along a path never decreases 

   h(A) ≤ cost(A to C) + h(C) 

 A* graph search is optimal 
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Optimality 

 Tree search: 
 A* is optimal if heuristic is admissible 
 UCS is a special case (h = 0) 

 
 Graph search: 

 A* optimal if heuristic is consistent 
 UCS optimal (h = 0 is consistent) 

 

 Consistency implies admissibility 
 

 In general, most natural admissible heuristics 
tend to be consistent, especially if from 
relaxed problems 



Constraint Satisfaction Problems 

 Standard search problems: 
 State is a “black box”: arbitrary data structure 
 Goal test can be any function over states 
 Successor function can also be anything 

 

 Constraint satisfaction problems (CSPs): 
 A special subset of search problems 

 State is defined by variables Xi  with values from a 
domain D (sometimes D depends on i) 

 Goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables 

 
 Simple example of a formal representation language 

 
 Allows useful general-purpose algorithms with more 

power than standard search algorithms 
 



Constraint Graphs 

 Binary CSP: each constraint relates (at most) two 
variables 

 

 Binary constraint graph: nodes are variables, arcs 
show constraints 

 

 General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem! 



Backtracking Search 

 Backtracking search is the basic uninformed algorithm for solving CSPs 
 

 Idea 1: One variable at a time 
 Variable assignments are commutative, so fix ordering 
 I.e., [WA = red then NT = green] same as [NT = green then WA = red] 
 Only need to consider assignments to a single variable at each step 

 

 Idea 2: Check constraints as you go 
 I.e. consider only values which do not conflict previous assignments 
 Might have to do some computation to check the constraints 
 “Incremental goal test” 

 

 Depth-first search with these two improvements 
 is called backtracking search (not the best name) 

 

 Can solve n-queens for n  25 



 Filtering: Keep track of domains for unassigned variables and cross off bad options 

 Forward checking: Cross off values that violate a constraint when added to the existing 
assignment 

Forward Checking 

WA 
SA 

NT Q 

NSW 

V 

[Demo: coloring -- forward checking] 



Consistency of A Single Arc 

 An arc X  Y is consistent iff for every x in the tail there is some y in the head which 
could be assigned without violating a constraint 
 
 
 
 
 
 
 
 
 

 
 

 Forward checking: Enforcing consistency of arcs pointing to each new assignment 

Delete from the tail! 
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Arc Consistency of an Entire CSP 

 A simple form of propagation makes sure all arcs are consistent: 
 
 
 
 
 
 
 

 
 Important: If X loses a value, neighbors of X need to be rechecked! 
 Arc consistency detects failure earlier than forward checking 
 Can be run as a preprocessor or after each assignment  
 What’s the downside of enforcing arc consistency? 

Remember:  
Delete from  

the tail! 

WA SA 

NT Q 

NSW 

V 



Enforcing Arc Consistency in a CSP 

 Runtime: O(n2d3), can be reduced to O(n2d2) 
 … but detecting all possible future problems is NP-hard – why? 

[Demo: CSP applet (made available by aispace.org) -- n-queens] 



Ordering: Minimum Remaining Values 

 Variable Ordering: Minimum remaining values (MRV): 

 Choose the variable with the fewest legal left values in its domain 

 

 

 

 

 

 Why min rather than max? 

 Also called “most constrained variable” 

 “Fail-fast” ordering 



Ordering: Least Constraining Value 

 Value Ordering: Least Constraining Value 
 Given a choice of variable, choose the least 

constraining value 

 I.e., the one that rules out the fewest values in 
the remaining variables 

 Note that it may take some computation to 
determine this!  (E.g., rerunning filtering) 

 

 Why least rather than most? 

 

 Combining these ordering ideas makes 
 1000 queens feasible 



Tree-Structured CSPs 

 Algorithm for tree-structured CSPs: 
 Order: Choose a root variable, order variables so that parents precede children 

 
 
 
 
 
 
 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi) 
 Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi) 

 

 Runtime: O(n d2)  (why?) 



Cutset Conditioning 

SA 

SA SA SA 

Instantiate the cutset 
(all possible ways) 

Compute residual CSP 
for each assignment 

Solve the residual CSPs 
(tree structured) 

Choose a cutset 

O(finding minimal cutset)? NP-hard 



Local Search 

 Tree search keeps unexplored alternatives on the fringe (ensures completeness) 

 

 Local search: improve a single option until you can’t make it better (no fringe!) 

 

 New successor function: local changes 

 

 

 

 

 

 Generally much faster and more memory efficient (but incomplete and suboptimal) 



Iterative Algorithms for CSPs 

 Local search methods typically work with “complete” states, i.e., all variables assigned 
 

 To apply to CSPs: 
 Take an assignment with unsatisfied constraints 
 Operators reassign variable values 
 No fringe!  Live on the edge. 

 
 Algorithm: While not solved, 

 Variable selection: randomly select any conflicted variable 
 Value selection: min-conflicts heuristic: 

 Choose a value that violates the fewest constraints 
 I.e., hill climb with h(n) = total number of violated constraints 



Hill Climbing Diagram 



Adversarial Search (Minimax) 

 Deterministic, zero-sum games: 

 Tic-tac-toe, chess, checkers 

 One player maximizes result 

 The other minimizes result 

 

 Minimax search: 

 A state-space search tree 

 Players alternate turns 

 Compute each node’s minimax value: 
the best achievable utility against a 
rational (optimal) adversary 

8 2 5 6 

max 

min 2 5 

5 

Terminal values: 
part of the game  

Minimax values: 
computed recursively 



Evaluation Functions 

 Evaluation functions score non-terminals in depth-limited search 
 
 
 
 
 
 
 
 

 Ideal function: returns the actual minimax value of the position 
 In practice: typically weighted linear sum of features: 

 
 

 e.g.  f1(s) = (num white queens – num black queens), etc. 



Minimax Example 

12 8 5 2 3 2 14 4 6 



Minimax Pruning 

12 8 5 2 3 2 14 



Alpha-Beta Implementation 

def min-value(state , α, β): 
initialize v = +∞ 

for each successor of state: 
v = min(v, value(successor, α, β)) 
if v ≤ α return v 
β = min(β, v) 

return v 

 

def max-value(state, α, β): 
initialize v = -∞ 

for each successor of state: 
v = max(v, value(successor, α, β)) 
if v ≥ β return v 
α = max(α, v) 

return v 

α: MAX’s best option on path to root 
β: MIN’s best option on path to root 



Alpha-Beta Pruning Properties 

 This pruning has no effect on minimax value computed for the root! 
 

 Values of intermediate nodes might be wrong 
 Important: children of the root may have the wrong value 

 So the most naïve version won’t let you do action selection 

 

 Good child ordering improves effectiveness of pruning 
 

 With “perfect ordering”: 
 Time complexity drops to O(bm/2) 

 Doubles solvable depth! 

 Full search of, e.g. chess, is still hopeless… 

 

 This is a simple example of metareasoning (computing about what to compute) 

10 10 0 

max 

min 



Expectimax Search 

 Why wouldn’t we know what the result of an action will be? 
 Explicit randomness: rolling dice 
 Unpredictable opponents: the ghosts respond randomly 
 Actions can fail: when moving a robot, wheels might slip 

 
 Values should now reflect average-case (expectimax) 

outcomes, not worst-case (minimax) outcomes 
 

 Expectimax search: compute the average score under 
optimal play 
 Max nodes as in minimax search 
 Chance nodes are like min nodes but the outcome is uncertain 
 Calculate their expected utilities 
 I.e. take weighted average (expectation) of children 

 
 Later, we’ll learn how to formalize the underlying uncertain-

result problems as Markov Decision Processes 

10 4 5 7 

max 

chance 

10 10 9 100 

[Demo: min vs exp (L7D1,2)] 



Expectimax Pseudocode 

def exp-value(state): 
initialize v = 0 
for each successor of state: 
  p = probability(successor) 

v += p * value(successor) 
return v 
 

5 7 8 24 -12 

1/2 
1/3 

1/6 

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10 



Utilities 

 Utilities are functions from outcomes 
(states of the world) to real numbers 
that describe an agent’s preferences 

 

 Where do utilities come from? 
 In a game, may be simple (+1/-1) 
 Utilities summarize the agent’s goals 
 Theorem: any “rational” preferences can 

be summarized as a utility function 
 

 We hard-wire utilities and let 
behaviors emerge 
 Why don’t we let agents pick utilities? 
 Why don’t we prescribe behaviors? 

 



Preferences 

 An agent must have preferences among: 

 Prizes: A, B, etc. 

 Lotteries: situations with uncertain prizes 

 
 

 

 Notation: 
 Preference: 

 Indifference: 

 

A                  B 

p                1-p 

  A Lottery   A Prize 

A 



Rational Preferences 

Theorem: Rational preferences imply behavior describable as maximization of expected utility 

The Axioms of Rationality 



 Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944] 
 Given any preferences satisfying these constraints, there exists a real-valued 
 function U such that: 

 
 
 
 
 

 I.e. values assigned by U preserve preferences of both prizes and lotteries! 
 
 

 Maximum expected utility (MEU) principle: 
 Choose the action that maximizes expected utility 
 Note: an agent can be entirely rational (consistent with MEU) without ever representing or 

manipulating utilities and probabilities 
 E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner 

MEU Principle 



Markov Decision Processes 

 An MDP is defined by: 
 A set of states s  S 
 A set of actions a  A 
 A transition function T(s, a, s’) 

 Probability that a from s leads to s’, i.e., P(s’| s, a) 
 Also called the model or the dynamics 

 A reward function R(s, a, s’)  
 Sometimes just R(s) or R(s’) 

 A start state 
 Maybe a terminal state 

 
 MDPs are non-deterministic search problems 

 One way to solve them is with expectimax search 
 We’ll have a new tool soon 

[Demo – gridworld manual intro (L8D1)] 



Policies 

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s 

 In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal 

 

 For MDPs, we want an optimal policy *: S → A 
 A policy  gives an action for each state 

 An optimal policy is one that maximizes        
expected utility if followed 

 An explicit policy defines a reflex agent 

 

 Expectimax didn’t compute entire policies 
 It computed the action for a single state only 

 



Discounting 

 How to discount? 
 Each time we descend a level, we 

multiply in the discount once 

 

 Why discount? 
 Sooner rewards probably do have 

higher utility than later rewards 

 Also helps our algorithms converge 

 

 Example: discount of 0.5 
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 

 U([1,2,3]) < U([3,2,1]) 



Values of States 

 Fundamental operation: compute the (expectimax) value of a state 

 Expected utility under optimal action 

 Average sum of (discounted) rewards 

 This is just what expectimax computed! 

 

 Recursive definition of value: 

a 

s 

s, a 

s,a,s’ 

s’ 



Value Iteration 

 Start with V0(s) = 0: no time steps left means an expected reward sum of zero 
 

 Given vector of Vk(s) values, do one ply of expectimax from each state: 
 
 
 
 

 Repeat until convergence 
 
 

 Complexity of each iteration: O(S2A) 
 

 Theorem: will converge to unique optimal values 
 Basic idea: approximations get refined towards optimal values 
 Policy may converge long before values do 

a 

Vk+1(s) 

s, a 

s,a,s’ 

Vk(s’) 



Policy Evaluation 

 How do we calculate the V’s for a fixed policy ? 
 

 Idea 1: Turn recursive Bellman equations into updates 
 (like value iteration) 

 
 

 
 
 

 Efficiency: O(S2) per iteration 
 

 Idea 2: Without the maxes, the Bellman equations are just a linear system 
 Solve with Matlab (or your favorite linear system solver) 

(s) 

s 

s, (s) 

s, (s),s’ 

s’ 



Policy Extraction 

 Let’s imagine we have the optimal values V*(s) 
 

 How should we act? 

 It’s not obvious! 
 

 We need to do a mini-expectimax (one step) 
 

 

 

 

 This is called policy extraction, since it gets the policy implied by the values 

 

 

 

 



Computing Actions from Q-Values 

 Let’s imagine we have the optimal q-values: 

 

 How should we act? 

 Completely trivial to decide! 

 

 

 

 

 

 Important lesson: actions are easier to select from q-values than values! 

 

 

 



Policy Iteration 

 

 Evaluation: For fixed current policy , find values with policy evaluation: 
 Iterate until values converge: 

 

 

 

 Improvement: For fixed values, get a better policy using policy extraction 
 One-step look-ahead: 

 



Reinforcement Learning 

 Still assume a Markov decision process (MDP): 

 A set of states s  S 

 A set of actions (per state) A 

 A model T(s,a,s’) 

 A reward function R(s,a,s’) 

 Still looking for a policy (s) 
 

 New twist: don’t know T or R 

 I.e. we don’t know which states are good or what the actions do 

 Must actually try actions and states out to learn 



Q-Learning 

 Q-Learning: sample-based Q-value iteration 

 

 

 Learn Q(s,a) values as you go 

 Receive a sample (s,a,s’,r) 

 Consider your old estimate: 

 Consider your new sample estimate: 
 

 

 Incorporate the new estimate into a running average: 

[Demo: Q-learning – gridworld (L10D2)] 
[Demo: Q-learning – crawler (L10D3)] 



How to Explore? 

 Several schemes for forcing exploration 
 Simplest: random actions (-greedy) 

 Every time step, flip a coin 

 With (small) probability , act randomly 

 With (large) probability 1-, act on current policy 

 

 Problems with random actions? 
 You do eventually explore the space, but keep 

thrashing around once learning is done 

 One solution: lower  over time 

 Another solution: exploration functions 

 [Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)] 



Approximate Q-Learning 

 Q-learning with linear Q-functions: 
 
 
 
 
 
 

 Intuitive interpretation: 
 Adjust weights of active features 
 E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features 
 

 Formal justification: online least squares 

Exact Q’s 

Approximate Q’s 


