
Random Variables 

 A random variable is some aspect of the world about 
which we (may) have uncertainty 

 

 R = Is it raining? 

 T = Is it hot or cold? 

 D = How long will it take to drive to work? 

 L = Where is the ghost? 
 

 We denote random variables with capital letters 
 

 Like variables in a CSP, random variables have domains 
 

 R in {true, false}   (often write as {+r, -r}) 

 T in {hot, cold} 

 D in [0, ) 

 L in possible locations, maybe {(0,0), (0,1), …} 



 Shorthand notation: 

 

 

 

 

 

OK if all domain entries are unique 

 

 

Probability Distributions 

 Unobserved random variables have distributions 

 

 

 

 

 
 

 A distribution is a TABLE of probabilities of values 
 

 A probability (lower case value) is a single number 
 

 

 Must have:                                                 and 

T P 

hot 0.5 

cold 0.5 

W P 

sun 0.6 

rain 0.1 

fog 0.3 

meteor 0.0 



Joint Distributions 

 A joint distribution over a set of random variables: 
 specifies a real number for each assignment (or outcome):  

 
 

 
 
 

 

 Must obey: 

 
 
 

 

 
 Size of distribution if n variables with domain sizes d? 

 

 For all but the smallest distributions, impractical to write out! 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 



Probabilistic Models 

 A probabilistic model is a joint distribution 
over a set of random variables 

 

 Probabilistic models: 
 (Random) variables with domains  
 Assignments are called outcomes 
 Joint distributions: say whether assignments 

(outcomes) are likely 
 Normalized: sum to 1.0 
 Ideally: only certain variables directly interact 

 
 Constraint satisfaction problems: 

 Variables with domains 
 Constraints: state whether assignments are 

possible 
 Ideally: only certain variables directly interact 

 
 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

T W P 

hot sun T 

hot rain F 

cold sun F 

cold rain T 

Distribution over T,W 

Constraint over T,W 



Events 

 An event is a set E of outcomes 
 

 
 

 From a joint distribution, we can 
calculate the probability of any event 

 

 Probability that it’s hot AND sunny? 
 0.4 
 Probability that it’s hot? 

0.4 + 0.1 = 0.5 
 Probability that it’s hot OR sunny? 

0.4 + 0.1 + 0.2 = 0.7 

 Typically, the events we care about 
are partial assignments, like P(T=hot) 
 

  

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 



Marginal Distributions 

 Marginal distributions are sub-tables which eliminate variables  

 Marginalization (summing out): Combine collapsed rows by adding 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

T P 

hot 0.5 

cold 0.5 

W P 

sun 0.6 

rain 0.4 



Conditional Probabilities 

 A simple relation between joint and conditional probabilities 
 In fact, this is taken as the definition of a conditional probability 

 P(a|b) = “probability of a happening given b happened” 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

P(b) P(a) 

P(a,b) 



Conditional Distributions 

 Conditional distributions are probability distributions over 
some variables given fixed values of others 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

W P 

sun 0.8 

rain 0.2 

W P 

sun 0.4 

rain 0.6 

Conditional Distributions 
Joint Distribution 

𝑃 𝑊 = 𝑠𝑢𝑛  𝑇 = ℎ𝑜𝑡) 

𝑃 𝑊 = 𝑟𝑎𝑖𝑛  𝑇 = ℎ𝑜𝑡) 

𝑃 𝑊 = 𝑠𝑢𝑛  𝑇 = 𝑐𝑜𝑙𝑑) 

𝑃 𝑊 = 𝑟𝑎𝑖𝑛  𝑇 = 𝑐𝑜𝑙𝑑) 



Normalization Trick 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

W P 

sun 0.4 

rain 0.6 

T W P 

cold sun 0.2 

cold rain 0.3 

SELECT the joint 
probabilities 
matching the 

evidence 

 

NORMALIZE the 
selection 

(make it sum to one) 

 

 Why does this work? Sum of selection is P(evidence)!  (P(T=c), here) 

 

 

 

 

 

 

 

  



Probabilistic Inference 

 Probabilistic inference: compute a desired 
probability from other known probabilities (e.g. 
conditional from joint) 

 

 We generally compute conditional probabilities  
 P(on time | no reported accidents) = 0.90 

 These represent the agent’s beliefs given the evidence 

 

 Probabilities change with new evidence: 
 P(on time | no accidents, 5 a.m.) = 0.95 

 P(on time | no accidents, 5 a.m., raining) = 0.80 

 Observing new evidence causes beliefs to be updated 



Inference by Enumeration 

 General case: 
 Evidence variables:  
 Query* variable: 
 Hidden variables: 

 
 

All variables 

* Works fine with 
multiple query 
variables, too 

 We want: 
 

 Step 1: Select the 
entries consistent 
with the evidence 

 Step 2: Sum out H to get joint 
of Query and evidence 

 Step 3: Normalize 
 



Inference by Enumeration 

 P(W)? 

 Q = {W}, E = {}, H = {S, T} 

 

 P(W | winter)? 

Q = {W}, E = {S}, H = {T} 

 

 

 P(W | winter, hot)? 

Q = {W}, E = {S, T}, H = {} 

S T W P 

summer hot sun 0.30 

summer hot rain 0.05 

summer cold sun 0.10 

summer cold rain 0.05 

winter hot sun 0.10 

winter hot rain 0.05 

winter cold sun 0.15 

winter cold rain 0.20 

W P(W) 

sun 0.30 + 0.10 + 0.10 + 0.15 = 0.65 

rain 0.05 + 0.05 + 0.05 + 0.20 = 0.35 

W P(W | winter) 

sun (0.10 + 0.15) / 0.50 = 0.50 

rain (0.05 + 0.20) / 0.50 = 0.50 

W P(W | winter, hot) 

sun 0.10 / 0.15 = 2/3 

rain 0.05 / 0.15 = 1/3 



The Product Rule 

 Sometimes have conditional distributions but want the joint 

 

 

 

 



The Chain Rule 

 More generally, can always write any joint distribution as an incremental product of 
conditional distributions 
 
 
 
 
 
 

 Why is this always true? 
 
 



Bayes’ Rule 

 Two ways to factor a joint distribution over two variables: 
 

 
 

 Dividing, we get: 
 

 
 

 Why is this at all helpful? 
 

 Lets us build one conditional from its reverse 
 Often one conditional is tricky but the other one is simple 
 Foundation of many systems we’ll see later (e.g. ASR, MT) 

 
 In the running for most important AI equation! 

 

That’s my rule! 

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


Inference with Bayes’ Rule 

 Example: Diagnostic probability from causal probability: 

 

 

 Example: 
 M: meningitis, S: stiff neck 

 

 

 
 

 

 

 Note: posterior probability of meningitis still very small: 0.008 

 Note: you should still get stiff necks checked out!  Why? 

Example 
givens 



Independence 

 Two variables are independent in a joint distribution if: 
 

 

 

 

 

 Says the joint distribution factors into a product of two simple ones 

 Usually variables aren’t independent! 

 

 Can use independence as a modeling assumption 
 Independence can be a simplifying assumption 

 Empirical  joint distributions: at best “close” to independent 

 What could we assume for {Weather, Traffic, Cavity}? 

 

 Independence is like something from CSPs: what? 



Example: Independence? 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

T W P 

hot sun 0.5 * 0.6 = 0.3 

hot rain 0.5 * 0.4 = 0.2 

cold sun 0.5 * 0.6 = 0.3 

cold rain 0.5 * 0.4 = 0.2 

T P 

hot 0.4 + 0.1 = 0.5 

cold 0.2 + 0.3 = 0.5 

W P 

sun 0.4 + 0.2 = 0.6 

rain 0.1 + 0.3 = 0.4 



Conditional Independence 

 P(Toothache, Cavity, Catch) 
 

 If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache: 
 P(+catch | +toothache, +cavity) = P(+catch | +cavity) 

 
 The same independence holds if I don’t have a cavity: 

 P(+catch | +toothache, -cavity) = P(+catch| -cavity) 

 
 Catch is conditionally independent of Toothache given Cavity: 

 P(Catch | Toothache, Cavity) = P(Catch | Cavity) 

 

 Equivalent statements: 
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity) 
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 
 One can be derived from the other easily 



Conditional Independence and the Chain Rule 

 Chain rule:  
 

 

 Trivial decomposition: 
 

 
 

 
 

 With assumption of conditional independence: 
 
 
 
 

 Bayes’ nets / graphical models help us express conditional independence assumptions 
 



Reasoning over Time or Space 

 Often, we want to reason about a sequence of observations 
 

 Speech recognition 
 

 Robot localization 
 

 User attention 
 

 Medical monitoring 

 

 Need to introduce time (or space) into our models 



Markov Models 

 Value of X at a given time is called the state 

 

 

 

 

 

 

 Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities) 

 Stationarity assumption: transition probabilities the same at all times 

 Same as MDP transition model, but no choice of action 

X2 X1 X3 X4 



Joint Distribution of a Markov Model 

 Joint distribution: 

 
 

 More generally: 
 

 

 
 Questions to be resolved: 

 Does this indeed define a joint distribution? 

 Can every joint distribution be factored this way, or are we making some assumptions 
about the joint distribution by using this factorization? 

X2 X1 X3 X4 



Chain Rule and Markov Models 

 From the chain rule, every joint distribution over                                 can be written as: 

 

 

 

 Assuming that 

                                                                    and 

 

    results in the expression posited on the previous slide:  

 
 

X2 X1 X3 X4 



Example Markov Chain: Weather 

 Initial distribution: 1.0 sun 

 

 

 

 What is the probability distribution after one step? 

rain sun 

0.9 

0.7 

0.3 

0.1 



Hidden Markov Models 

 Markov chains not so useful for most agents 
 Need observations to update your beliefs 

 

 Hidden Markov models (HMMs) 
 Underlying Markov chain over states X 

 You observe outputs (effects) at each time step 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 



Example: Weather HMM 

Rt Rt+1 P(Rt+1|Rt) 

+r +r 0.7 

+r -r 0.3 

-r +r 0.3 

-r -r 0.7 

Umbrellat-1 

Rt Ut P(Ut|Rt) 

+r +u 0.9 

+r -u 0.1 

-r +u 0.2 

-r -u 0.8 

Umbrellat Umbrellat+1 

Raint-1 Raint Raint+1 

 An HMM is defined by: 
 Initial distribution: 
 Transitions: 
 Emissions: 



Joint Distribution of an HMM 

 Joint distribution: 

 
 

 

 More generally: 
 

 

 Questions to be resolved: 
 Does this indeed define a joint distribution? 

 Can every joint distribution be factored this way, or are we making some assumptions about the 
joint distribution by using this factorization? 

X5 X2 

E1 

X1 X3 

E2 E3 E5 



Implied Conditional Independencies 

 Many implied conditional independencies, e.g., 

 

 To prove them 

 Approach 1: follow similar (algebraic) approach to what we did in the 
Markov models lecture 

 Approach 2: directly from the graph structure (3 lectures from now) 

 Intuition: If path between U and V goes through W, then 

X2 

E1 

X1 X3 

E2 E3 

[Some fine print later] 



Passage of Time 

 Assume we have current belief P(X | evidence to date) 

 

 

 Then, after one time step passes: 

 

 

 

 

 

 

 Basic idea: beliefs get “pushed” through the transitions 
 With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes. B’ doesn’t include the evidence from time t+1 

 

X2 X1 

 Or compactly: 



Observation 

 Assume we have current belief P(X | previous evidence): 

 

 

 Then, after evidence comes in: 

 

 

 

 

 

 

 

 Or, compactly: 

 

 

 

E1 

X1 

 Basic idea: beliefs “reweighted” 
by likelihood of evidence 

 Unlike passage of time, we have 
to renormalize 

 



Example: Weather HMM 

Rt Rt+1 P(Rt+1|Rt) 

+r +r 0.7 

+r -r 0.3 

-r +r 0.3 

-r -r 0.7 

Rt Ut P(Ut|Rt) 

+r +u 0.9 

+r -u 0.1 

-r +u 0.2 

-r -u 0.8 

Umbrella1 Umbrella2 

Rain0 Rain1 Rain2 

B(+r) = 0.5 
B(-r)  = 0.5 

B’(+r) = 0.5 
B’(-r)  = 0.5 

B(+r) = 0.818 
B(-r)  = 0.182 

B’(+r) = 0.627 
B’(-r)  = 0.373 

B(+r) = 0.883 
B(-r)  = 0.117 



Particle Filtering 

0.0 0.1 

0.0 0.0 

0.0 

0.2 

0.0 0.2 0.5 

 Filtering: approximate solution 
 

 Sometimes |X| is too big to use exact inference 
 |X| may be too big to even store B(X) 
 E.g. X is continuous 

 

 Solution: approximate inference 
 Track samples of X, not all values 
 Samples are called particles 
 Time per step is linear in the number of samples 
 But: number needed may be large 
 In memory: list of particles, not states 

 

 This is how robot localization works in practice 
 

 Particle is just new name for sample 



Particle Filtering: Elapse Time 

 Each particle is moved by sampling its next 
position from the transition model 

 

 

 

 This is like prior sampling – samples’ frequencies 
reflect the transition probabilities 

 

 Here, most samples move clockwise, but some move in 
another direction or stay in place 

 

 

 This captures the passage of time 
 If enough samples, close to exact values before and 

after (consistent) 

 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3) 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 



 Slightly trickier: 
 

 Don’t sample observation, fix it 
 

 Similar to likelihood weighting, downweight 
samples based on the evidence 

 

 

 

 
 

 As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e)) 

Particle Filtering: Observe 

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 



Particle Filtering: Resample 

 Rather than tracking weighted samples, we 
resample 

 

 N times, we choose from our weighted sample 
distribution (i.e. draw with replacement) 

 

 This is equivalent to renormalizing the 
distribution 

 

 Now the update is complete for this time step, 
continue with the next one 

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2) 



Bayes’ Net Semantics 

 A directed, acyclic graph, one node per random variable 
 

 A conditional probability table (CPT) for each node 
 

 A collection of distributions over X, one for each combination 
of parents’ values 
 
 

 

 Bayes’ nets implicitly encode joint distributions 
 

 As a product of local conditional distributions 
 

 To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together: 
 

 
 



Example: Alarm Network 

B P(B) 

+b 0.001 

-b 0.999 

E P(E) 

+e 0.002 

-e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 

+b +e -a 0.05 

+b -e +a 0.94 

+b -e -a 0.06 

-b +e +a 0.29 

-b +e -a 0.71 

-b -e +a 0.001 

-b -e -a 0.999 

A J P(J|A) 

+a +j 0.9 

+a -j 0.1 

-a +j 0.05 

-a -j 0.95 

A M P(M|A) 

+a +m 0.7 

+a -m 0.3 

-a +m 0.01 

-a -m 0.99 

B E 

A 

M J 



D-separation: Outline 

 Study independence 
properties for triples 

 

 Analyze complex cases in 
terms of member triples 

 

 D-separation: a condition / 
algorithm for answering 
such queries 

 



Active / Inactive Paths 

 Question: Are X and Y conditionally independent given 
evidence variables {Z}? 
 Yes, if X and Y “d-separated” by Z 
 Consider all (undirected) paths from X to Y 
 No active paths = independence! 

 

 
 A path is active if each triple is active: 

 Causal chain A  B  C where B is unobserved (either direction) 
 Common cause A  B  C where B is unobserved 
 Common effect (aka v-structure) 
 A  B  C where B or one of its descendants is observed 
  

 
 All it takes to block a path is a single inactive segment 

 
  

Active Triples Inactive Triples 



Example 

R 

T 

B 

D 

L 

T’ 

Yes 

Yes 

Yes 



Inference by Enumeration in Bayes’ Net 

 Given unlimited time, inference in BNs is easy 
 

 Reminder of inference by enumeration by example: 
B E 

A 

M J 



Operation 1: Join Factors 

 First basic operation: joining factors 

 Combining factors: 

 Just like a database join 

 Get all factors over the joining variable 

 Build a new factor over the union of the variables 
involved 

 

 Example: Join on R 

 

 

 

 

 

 

 

 Computation for each entry: pointwise products 

+r 0.1 
-r 0.9 

+r +t 0.8 
+r -t 0.2 
-r +t 0.1 
-r -t 0.9 

+r +t 0.08 
+r -t 0.02 
-r +t 0.09 
-r -t 0.81 T 

R 

R,T 



Operation 2: Eliminate 

 Second basic operation: marginalization 
 

 Take a factor and sum out a variable 
 

 Shrinks a factor to a smaller one 
 

 A projection operation 
 

 Example: 

 

 
 +r +t 0.08 
+r -t 0.02 
-r +t 0.09 
-r -t 0.81 

+t 0.17 
-t 0.83 



General Variable Elimination 

 Query: 

 

 Start with initial factors: 
 Local CPTs (but instantiated by evidence) 

 

 While there are still hidden variables 
(not Q or evidence): 
 Pick a hidden variable H 

 Join all factors mentioning H 

 Eliminate (sum out) H 

 

 Join all remaining factors and normalize 



Marginalizing Early! (aka VE) 

Sum out R 

T 

L 

+r +t 0.08 
+r -t 0.02 
-r +t 0.09 
-r -t 0.81 

+t +l 0.3 
+t -l 0.7 
-t +l 0.1 
-t -l 0.9 

+t 0.17 
-t 0.83 

+t +l 0.3 
+t -l 0.7 
-t +l 0.1 
-t -l 0.9 

T 

R 

L 

+r 0.1 
-r 0.9 

+r +t 0.8 
+r -t 0.2 
-r +t 0.1 
-r -t 0.9 

+t +l 0.3 
+t -l 0.7 
-t +l 0.1 
-t -l 0.9 

Join R 

R, T 

L 

T, L L 

+t +l 0.051 

+t -l 0.119 

-t +l 0.083 

-t -l 0.747 

+l 0.134 
-l 0.866 

Join T Sum out T 



Bayes’ Net Sampling Summary 

 Prior Sampling  P 

 
 

 

 

 
 

 Likelihood Weighting  P( Q | e) 

 Rejection Sampling  P( Q | e ) 

 
 

 

 

 
 

 Gibbs Sampling  P( Q | e ) 



Prior Sampling 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 

+c 0.5 
-c 0.5 

+c 
 

+s 0.1 

-s 0.9 

-c 
 

+s 0.5 
-s 0.5 

+c 
 

+r 0.8 

-r 0.2 

-c 
 

+r 0.2 
-r 0.8 

+s 
 
 
 

+r 
 

+w 0.99 

-w 0.01 

-r 
 

+w 0.90 

-w 0.10 

-s 
 
 
 

+r 
 

+w 0.90 

-w 0.10 

-r 
 

+w 0.01 

-w 0.99 

Samples: 

+c, -s, +r, +w 

-c, +s, -r, +w 

… 



 +c, -s, +r, +w 
 +c, +s, +r, +w 
 -c, +s, +r,  -w 
 +c, -s, +r, +w 
 -c,  -s,  -r, +w 

Rejection Sampling 

 Let’s say we want P(C) 

 No point keeping all samples around 

 Just tally counts of C as we go 
 

 Let’s say we want P(C| +s) 

 Same thing: tally C outcomes, but 
ignore (reject) samples which don’t 
have S=+s 

 This is called rejection sampling 

 It is also consistent for conditional 
probabilities (i.e., correct in the limit) 

S R 

W 

C 



Likelihood Weighting 

+c 0.5 

-c 0.5 

+c 
 

+s 0.1 
-s 0.9 

-c 
 

+s 0.5 

-s 0.5 

+c 
 

+r 0.8 
-r 0.2 

-c 
 

+r 0.2 

-r 0.8 

+s 
 
 
 

+r 
 

+w 0.99 
-w 0.01 

-r 
 

+w 0.90 
-w 0.10 

-s 
 
 
 

+r 
 

+w 0.90 
-w 0.10 

-r 
 

+w 0.01 

-w 0.99 

Samples: 

+c, +s, +r, +w 

… 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 



 Step 2: Initialize other variables  
 Randomly 

Gibbs Sampling Example: P( S | +r) 

 Step 1: Fix evidence 
 R = +r 

 
 

 

 Steps 3: Repeat 
 Choose a non-evidence variable X at random 

 Resample X from P( X | all other variables) 

 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 


