Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
- $R=$ Is it raining?
- T = Is it hot or cold?
- D = How long will it take to drive to work?
- $\mathrm{L}=$ Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains

- R in $\{$ true, false $\}$ (often write as $\{+r,-r\}$)
- T in \{hot, cold\}
- D in $[0, \infty)$
- L in possible locations, maybe $\{(0,0),(0,1), \ldots\}$

Probability Distributions

- Unobserved random variables have distributions

$P(T)$	
T	P
hot	0.5
cold	0.5

$P(W)$	
W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- A distribution is a TABLE of probabilities of values

Shorthand notation:

$$
\begin{aligned}
P(\text { hot }) & =P(T=\text { hot }) \\
P(\text { cold }) & =P(T=\text { cold }) \\
P(\text { rain }) & =P(W=\text { rain })
\end{aligned}
$$

OK if all domain entries are unique

- A probability (lower case value) is a single number

$$
P(W=\text { rain })=0.1
$$

- Must have: $\forall x \quad P(X=x) \geq 0 \quad$ and $\quad \sum_{x} P(X=x)=1$

Joint Distributions

- A joint distribution over a set of random variables: $X_{1}, X_{2}, \ldots X_{n}$ specifies a real number for each assignment (or outcome):

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

- Must obey:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0
$$

$$
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right)=1
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d ?
- For all but the smallest distributions, impractical to write out!

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions: say whether assignments (outcomes) are likely
- Normalized: sum to 1.0
- Ideally: only certain variables directly interact

Distribution over T,W

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

T	W	P
hot	sun	T
hot	rain	F
cold	sun	F
cold	rain	T

Events

- An event is a set E of outcomes

$$
P(E)=\sum_{\left(x_{1} \ldots x_{n}\right) \in E} P\left(x_{1} \ldots x_{n}\right)
$$

- From a joint distribution, we can calculate the probability of any event
- Probability that it's hot AND sunny?
0.4
- Probability that it's hot?

$$
0.4+0.1=0.5
$$

- Probability that it's hot OR sunny?

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
0.4+0.1+0.2=0.7
$$

- Typically, the events we care about are partial assignments, like $\mathrm{P}(\mathrm{T}=$ hot $)$

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability
- $\mathrm{P}(\mathrm{a} \mid \mathrm{b})=$ "probability of a happening given b happened"

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{aligned}
& P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=\frac{0.2}{0.5}=0.4 \\
& =P(W=s, T=c)+P(W=r, T=c) \\
&
\end{aligned}
$$

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions
$P(W=\operatorname{sun} \mid T=$ hot $)$
$P(W=\operatorname{rain} \mid T=$ hot $)$

$$
P(W \mid T=\operatorname{cold})
$$

W	P
sun	0.4
rain	0.6

$$
\begin{aligned}
& P(W=\operatorname{sun} \mid T=\text { cold }) \\
& P(W=\operatorname{rain} \mid T=\text { cold })
\end{aligned}
$$

Joint Distribution

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the		, W		NORMALIZE the selection (make it sum to one)	W	$=c$)
evidence	T	W	P		W	P
	cold	sun	0.2		sun	0.4
	cold	rain	0.3		rain	0.6

- Why does this work? Sum of selection is $P(e v i d e n c e)!(P(T=c)$, here)

$$
P\left(x_{1} \mid x_{2}\right)=\frac{P\left(x_{1}, x_{2}\right)}{P\left(x_{2}\right)}=\frac{P\left(x_{1}, x_{2}\right)}{\sum_{x_{1}} P\left(x_{1}, x_{2}\right)}
$$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
- P(on time \| no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P (on time | no accidents, 5 a.m.) $=0.95$
- P(on time | no accidents, 5 a.m., raining) $=0.80$
- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
- We want
* Works fine with multiple query
variables, too

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 3: Normalize of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$

Inference by Enumeration

- $P(W)$?
$Q=\{W\}, E=\{ \}, H=\{S, T\}$

W	$P(W)$
sun	$0.30+0.10+0.10+0.15=0.65$
rain	$0.05+0.05+0.05+0.20=0.35$

- P(W | winter)?
$Q=\{W\}, E=\{S\}, H=\{T\}$

W	$P(W \mid$ winter $)$
sun	$(0.10+0.15) / 0.50=0.50$
rain	$(0.05+0.20) / 0.50=0.50$

- P(W | winter, hot)?
$Q=\{W\}, E=\{S, T\}, H=\{ \}$

W	$P(W \mid$ winter, hot $)$
sun	$0.10 / 0.15=2 / 3$
rain	$0.05 / 0.15=1 / 3$

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

The Product Rule

- Sometimes have conditional distributions but want the joint

$$
P(y) P(x \mid y)=P(x, y) \quad \Longleftrightarrow \quad P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}
$$

- Why is this always true?

$$
P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right)=P\left(x_{1}\right) \frac{P\left(x_{2}, x_{1}\right)}{P\left(x_{1}\right)} \frac{P\left(x_{3}, x_{1}, x_{2}\right)}{P\left(x_{1}, x_{2}\right)}
$$

Bayes' Rule

- Two ways to factor a joint distribution over two variables:

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- Dividing, we get:

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- Why is this at all helpful?
- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems we'll see later (e.g. ASR, MT)

- In the running for most important Al equation!

Inference with Bayes' Rule

- Example: Diagnostic probability from causal probability:

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

- Example:
- M: meningitis, S: stiff neck

$$
\left.\begin{array}{l}
P(+m)=0.0001 \\
P(+s \mid+m)=0.8 \\
P(+s \mid-m)=0.01
\end{array}\right\} \begin{aligned}
& \text { Example } \\
& \text { givens }
\end{aligned}
$$

$P(+m \mid+s)=\frac{P(+s \mid+m) P(+m)}{P(+s)}=\frac{P(+s \mid+m) P(+m)}{P(+s \mid+m) P(+m)+P(+s \mid-m) P(-m)}=\frac{0.8 \times 0.0001}{0.8 \times 0.0001+0.01 \times 0.999}$

- Note: posterior probability of meningitis still very small: 0.008
- Note: you should still get stiff necks checked out! Why?

Independence

- Two variables are independent in a joint distribution if:

$$
\begin{array}{cc}
P(X, Y)=P(X) P(Y) & X \Perp Y \\
\forall x, y P(x, y)=P(x) P(y) &
\end{array}
$$

- Says the joint distribution factors into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a modeling assumption
- Independence can be a simplifying assumption
- Empirical joint distributions: at best "close" to independent

- What could we assume for \{Weather, Traffic, Cavity\}?
- Independence is like something from CSPs: what?

Example: Independence?

$P_{1}(T, W)$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(T)$

T	P
hot	$0.4+0.1=0.5$
cold	$0.2+0.3=0.5$

$$
P_{2}(T, W)=P(T) P(W)
$$

$P(W)$

W	P
sun	$0.4+0.2=0.6$
rain	$0.1+0.3=0.4$

T	W	P
hot	sun	$0.5 * 0.6=0.3$
hot	rain	$0.5 * 0.4=0.2$
cold	sun	$0.5 * 0.6=0.3$
cold	rain	$0.5 * 0.4=0.2$

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- $\mathrm{P}(+$ catch | +toothache, +cavity) $=\mathrm{P}(+$ catch | +cavity $)$
- The same independence holds if I don't have a cavity:
- P(+catch | +toothache, -cavity) = P(+catch| -cavity)
- Catch is conditionally independent of Toothache given Cavity:
- P(Catch | Toothache, Cavity) = P(Catch | Cavity)

- Equivalent statements:
- P (Toothache | Catch , Cavity) $=\mathrm{P}($ Toothache | Cavity)
- P (Toothache, Catch | Cavity) $=\mathrm{P}$ (Toothache | Cavity) P(Catch | Cavity)
- One can be derived from the other easily

Conditional Independence and the Chain Rule

- Chain rule:

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$ P (Rain) P (Traffic \mid Rain) P (Umbrella|Rain, Traffic)
- With assumption of conditional independence:
$P($ Traffic, Rain, Umbrella $)=$ P (Rain) P (Traffic|Rain) P (Umbrella|Rain)

$T \Perp U \mid R$
- Bayes' nets / graphical models help us express conditional independence assumptions

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

- Value of X at a given time is called the state

$$
\begin{aligned}
& X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow X_{4} \rightarrow \rightarrow \\
& P\left(X_{1}\right) \quad P\left(X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Joint Distribution of a Markov Model

- Joint distribution:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)
$$

- More generally:

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{T}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\
& =P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

- Questions to be resolved:
- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and Markov Models

- From the chain rule, every joint distribution over $X_{1}, X_{2}, X_{3}, X_{4}$ can be written as:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) P\left(X_{4} \mid X_{1}, X_{2}, X_{3}\right)
$$

- Assuming that

$$
X_{3} \Perp X_{1} \mid X_{2} \quad \text { and } \quad X_{4} \Perp X_{1}, X_{2} \mid X_{3}
$$

results in the expression posited on the previous slide:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)
$$

Example Markov Chain: Weather

- Initial distribution: 1.0 sun

- What is the probability distribution after one step?

$$
\begin{aligned}
P\left(X_{2}=\text { sun }\right)= & P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { sun }\right) P\left(X_{1}=\text { sun }\right)+ \\
& P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { rain }\right) P\left(X_{1}=\text { rain }\right) \\
& 0.9 \cdot 1.0+0.3 \cdot 0.0=0.9
\end{aligned}
$$

Hidden Markov Models

- Markov chains not so useful for most agents
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You observe outputs (effects) at each time step

Example: Weather HMM

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:
$P\left(X_{t} \mid X_{t-1}\right)$
- Emissions:
$P\left(E_{t} \mid X_{t}\right)$

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Joint Distribution of an HMM

- Joint distribution:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(E_{3} \mid X_{3}\right)$
- More generally:
$P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)$
- Questions to be resolved:
- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Implied Conditional Independencies

- Many implied conditional independencies, e.g.,

$$
E_{1} \Perp X_{2}, E_{2}, X_{3}, E_{3} \mid X_{1}
$$

- To prove them
- Approach 1: follow similar (algebraic) approach to what we did in the Markov models lecture
- Approach 2: directly from the graph structure (3 lectures from now)
- Intuition: If path between U and V goes through W , then $U \Perp V \mid W_{\text {[Some fine print later] }}$

Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date $)$

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

- Basic idea: beliefs get "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes. B^{\prime} doesn't include the evidence from time $t+1$

Observation

- Assume we have current belief $P(X \mid$ previous evidence $)$:

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

" Basic idea: beliefs "reweighted"

- Or, compactly:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

by likelihood of evidence

- Unlike passage of time, we have to renormalize

Example: Weather HMM

Particle Filtering

- Filtering: approximate solution
- Sometimes $|X|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- This is like prior sampling - samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

- As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of $\mathrm{P}(\mathrm{e})$)

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

$P(+b,-e,+a,-j,+m)=$
$P(+b) P(-e) P(+a \mid+b,-e) P(-j \mid+a) P(+m \mid+a)=$
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering
 such queries

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables \{Z\}?
- Yes, if X and Y "d-separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure)
$A \rightarrow B \leftarrow C$ where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

Active Triples

Inactive Triples

Example

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$
P(B \mid+j,+m) \quad \propto_{B} P(B,+j,+m)
$$

$$
=\sum_{e, a} P(B, e, a,+j,+m)
$$

$$
=\sum_{e, a} P(B) P(e) P(a \mid B, e) P(+j \mid a) P(+m \mid a)
$$

$$
\begin{aligned}
= & P(B) P(+e) P(+a \mid B,+e) P(+j \mid+a) P(+m \mid+a)+P(B) P(+e) P(-a \mid B,+e) P(+j \mid-a) P(+m \mid-a) \\
& P(B) P(-e) P(+a \mid B,-e) P(+j \mid+a) P(+m \mid+a)+P(B) P(-e) P(-a \mid B,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables
 involved
- Example: Join on R

- Computation for each entry: pointwise products

$$
\forall r, t: \quad P(r, t)=P(r) \cdot P(t \mid r)
$$

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:
$P(R, T)$

$+r$	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

sum R	$P(T)$	
\square	+t 0.17 -t 0.83	

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)

Marginalizing Early! (aka VE)

Bayes' Net Sampling Summary

- Prior Sampling P

- Likelihood Weighting $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$

- Rejection Sampling $P(Q \mid e)$

- Gibbs Sampling $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$

Prior Sampling

Rejection Sampling

- Let's say we want P(C)
- No point keeping all samples around
- Just tally counts of C as we go
- Let's say we want P(C| +s)
- Same thing: tally C outcomes, but ignore (reject) samples which don't have $\mathrm{S}=+\mathrm{s}$
- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit)

$+\mathrm{C},-\mathrm{S},+\mathrm{r},+\mathrm{w}$
$+c,+s,+r,+w$
$-\mathrm{C},+\mathrm{S},+\mathrm{r},-\mathrm{W}$
$+c,-s,+r,+w$
$-C,-S,-r,+W$

Likelihood Weighting

$P(C)$

+c	0.5
-c	0.5

$P(S \mid C)$				
+C	+s	0.1		brink
	-S	0.9		
-C	+s	0.5		
	-S	0		
$P(W \mid S, R)$				
+S	+r		+W	0.99
			-w	0.01
	-r	r	+W	0.90
			-W	0.10
-S	+r		+W	0.90
			-w	0.10
	-r		+W	0.01
			-w	0.99

$$
w=1.0 \times 0.1 \times 0.99
$$

Gibbs Sampling Example: P(S|+r)

- Step 1: Fix evidence
- $\mathrm{R}=+\mathrm{r}$

- Step 2: Initialize other variables
- Randomly

- Steps 3: Repeat
- Choose a non-evidence variable X at random
- Resample X from $P(X \mid$ all other variables)

Sample from $P(S \mid+c,-w,+r) \quad$ Sample from $P(C \mid+s,-w,+r) \quad$ Sample from $P(W \mid+s,+c,+r)$

