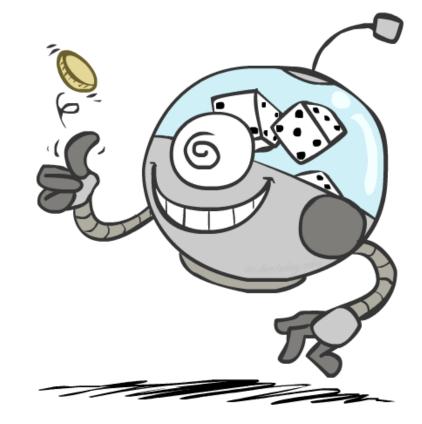
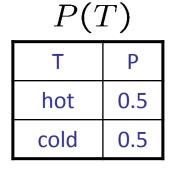
Random Variables

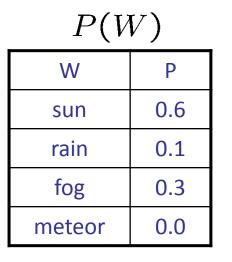
- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

Unobserved random variables have distributions





- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

P(W = rain) = 0.1

Must have:

$$\forall x \ P(X = x) \ge 0$$
 and

$$\sum_{x} P(X = x) = 1$$

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$

....

Shorthand notation:

OK *if* all domain entries are unique

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

• Must obey: $P(x_1, x_2, \dots x_n) \geq 0$

$$\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$$

\boldsymbol{D}	(Т	7	W)
1		,	VV)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models

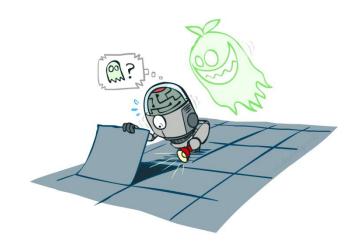
- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called *outcomes*
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

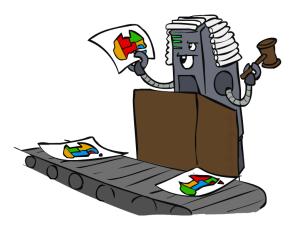
-		
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Distribution over T,W

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т



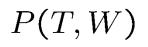


Events

• An *event* is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

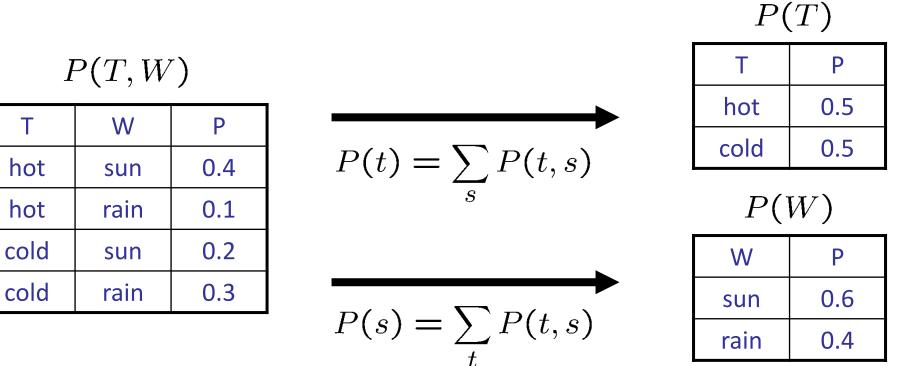
- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 0.4
 - Probability that it's hot?
 0.4 + 0.1 = 0.5
 - Probability that it's hot OR sunny?
 0.4 + 0.1 + 0.2 = 0.7
- Typically, the events we care about are partial assignments, like P(T=hot)

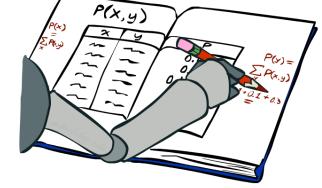


Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding



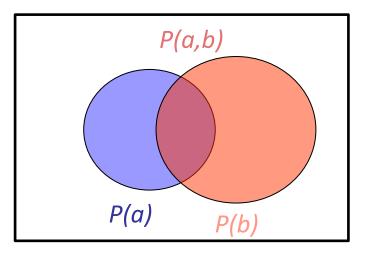


$P(X_1 = x_1) =$	$\sum P(X_1 = x_1, X_2 = x_2)$
	x_2

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability
 - P(a|b) = "probability of a happening given b happened"

$$P(a|b) = \frac{P(a,b)}{P(b)}$$



P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

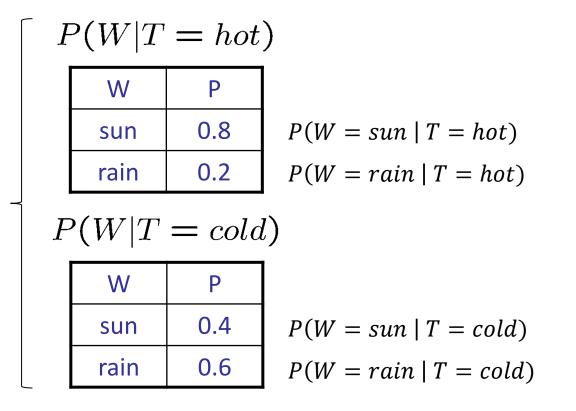
$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$
$$= P(W = s, T = c) + P(W = r, T = c)$$
$$= 0.2 + 0.3 = 0.5$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T)

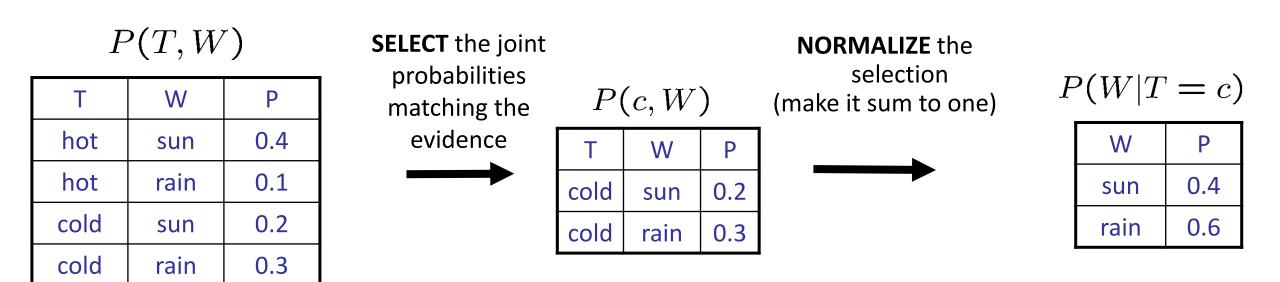


Joint Distribution

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick



Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
- $\begin{bmatrix} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{bmatrix} X_1, X_2, \dots X_n$ All variables

 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$

We want:

* Works fine with multiple query variables, too

 $P(Q|e_1\ldots e_k)$

 Step 1: Select the entries consistent with the evidence

-3

- 1

5

 \otimes

Pa

0.05

0.25

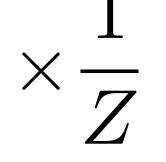
0.2

0.01

0.07

0.15

Step 3: Normalize



 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$

Inference by Enumeration

				C	—	14/	D
	W	P(W)		S	Т	W	Р
E = {}, H = {S, T}	sun	0.30 + 0.10 + 0.10 + 0.15 = 0.65		summer	hot	sun	0.30
. – (), 11 – (3, 1)	rain	0.05 + 0.05 + 0.05 + 0.20 = 0.35		summer	hot	rain	0.05
	Talli	0.03 + 0.03 + 0.03 + 0.20 - 0.33	ſ	summer	cold	sun	0.10
vinter)?			F	summer	cold	rain	0.05
= {S}, H = {T}	W	P(W winter)	F	winter	hot	sun	0.10
	sun	(0.10 + 0.15) / 0.50 = 0.50	┢	winter	hot	rain	0.05
	rain	(0.05 + 0.20) / 0.50 = 0.50	┢	winter	cold	sun	0.15
				witter	COIU	Sull	0.15
vinter, hot)?				winter	cold	rain	0.20
	\٨/	P(W winter hot)					

P(W)?

Q = {W}, E

P(W | w)

 $Q = \{W\}, E =$

P(W | w) $Q = \{W\}, E = \{S, T\}, H = \{\}$

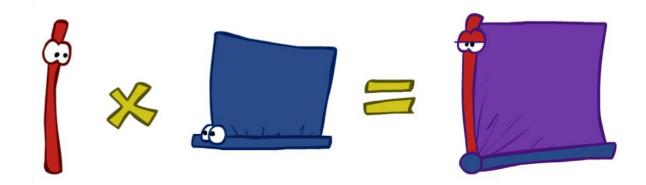
W	P(W winter, hot)
sun	0.10 / 0.15 = 2/3
rain	0.05 / 0.15 = 1/3

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$
 $(x|y) = \frac{P(x,y)}{P(y)}$

n/



The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

Why is this always true?

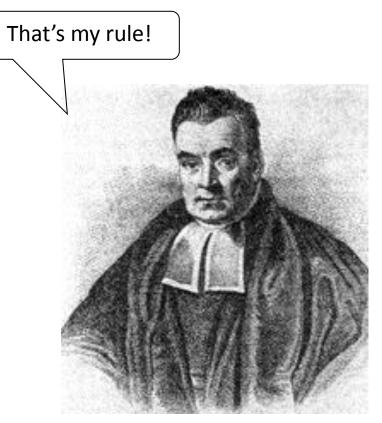
$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) = P(x_1)\frac{P(x_2, x_1)}{P(x_1)}\frac{P(x_3, x_1, x_2)}{P(x_1, x_2)}$$

Bayes' Rule

- Two ways to factor a joint distribution over two variables:
 - P(x,y) = P(x|y)P(y) = P(y|x)P(x)
- Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!



Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$\begin{array}{c} P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01 \end{array} \end{array} \ \ \begin{array}{c} \mbox{Example} \\ \mbox{givens} \end{array} \ \ \end{array}$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small: 0.008
- Note: you should still get stiff necks checked out! Why?

Independence

 $X \perp \!\!\!\perp Y$

Two variables are *independent* in a joint distribution if:

P(X,Y) = P(X)P(Y) $\forall x, y P(x,y) = P(x)P(y)$

- Says the joint distribution *factors* into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a *modeling assumption*
 - Independence can be a simplifying assumption
 - *Empirical* joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity}?
- Independence is like something from CSPs: what?

Example: Independence?

P(T)			
Т	Р		
hot	0.4 + 0.1 = 0.5		
cold	0.2 + 0.3 = 0.5		

 $P_1(T, W)$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

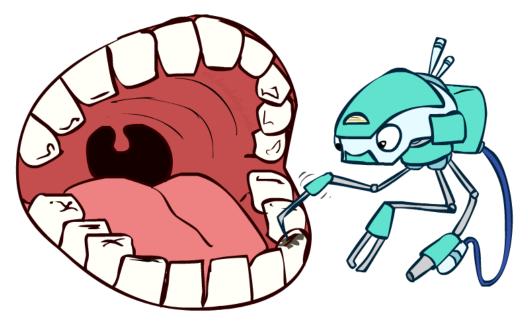
P(W)			
W	Р		
sun	0.4 + 0.2 = 0.6		
rain	0.1 + 0.3 = 0.4		

 $P_2(T,W) = P(T)P(W)$

Т	W	Р
hot	sun	0.5 * 0.6 = 0.3
hot	rain	0.5 * 0.4 = 0.2
cold	sun	0.5 * 0.6 = 0.3
cold	rain	0.5 * 0.4 = 0.2

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily



Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$
- Trivial decomposition:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

Bayes' nets / graphical models help us express conditional independence assumptions

$T \perp\!\!\!\!\perp U | R$

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

Value of X at a given time is called the state

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

$$P(X_1) \qquad P(X_t|X_{t-1})$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Joint Distribution of a Markov Model

$$\begin{array}{c} (X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \\ P(X_1) \qquad P(X_t | X_{t-1}) \end{array}$$

Joint distribution:

 $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$

More generally:

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$
$$= P(X_1)\prod_{t=2}^T P(X_t|X_{t-1})$$

- Questions to be resolved:
 - Does this indeed define a joint distribution?
 - Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and Markov Models

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4$$

• From the chain rule, *every* joint distribution over X_1, X_2, X_3, X_4 can be written as:

 $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)P(X_4|X_1, X_2, X_3)$

Assuming that

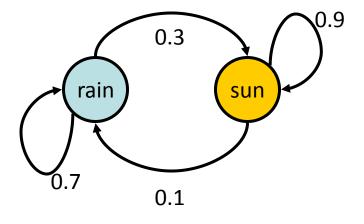
 $X_3 \perp\!\!\!\perp X_1 \mid X_2$ and $X_4 \perp\!\!\!\perp X_1, X_2 \mid X_3$

results in the expression posited on the previous slide:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$

Example Markov Chain: Weather

Initial distribution: 1.0 sun



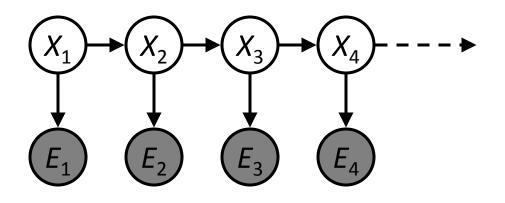
What is the probability distribution after one step?

$$P(X_2 = \operatorname{sun}) = P(X_2 = \operatorname{sun}|X_1 = \operatorname{sun})P(X_1 = \operatorname{sun}) + P(X_2 = \operatorname{sun}|X_1 = \operatorname{rain})P(X_1 = \operatorname{rain})$$

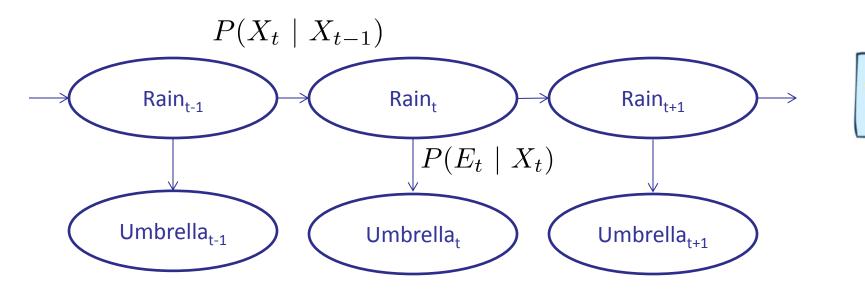
 $0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$

Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step



Example: Weather HMM



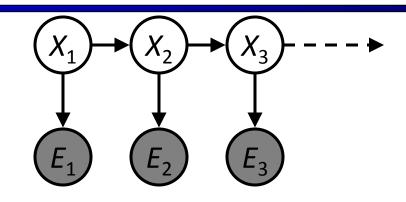
An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transitions:
- Emissions:

 $P(X_t \mid X_{t-1})$ $P(E_t \mid X_t)$

R _t	R _{t+1}	$P(R_{t+1} R_t)$	R _t	Ut	P(U _t R _t
+r	+r	0.7	+r	+u	0.9
+r	-r	0.3	+r	-u	0.1
-r	+r	0.3	-r	+u	0.2
-r	-r	0.7	-r	-u	0.8

Joint Distribution of an HMM



Joint distribution:

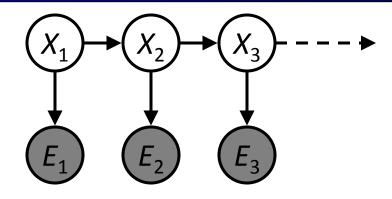
 $P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$

More generally:

 $P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1)\prod_{t=2}^T P(X_t|X_{t-1})P(E_t|X_t)$

- Questions to be resolved:
 - Does this indeed define a joint distribution?
 - Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Implied Conditional Independencies



Many implied conditional independencies, e.g.,

$E_1 \perp\!\!\!\perp X_2, E_2, X_3, E_3 \mid X_1$

To prove them

- Approach 1: follow similar (algebraic) approach to what we did in the Markov models lecture
- Approach 2: directly from the graph structure (3 lectures from now)
 - Intuition: If path between U and V goes through W, then $U \perp V \mid W$ [Some fine print later]

Passage of Time

Assume we have current belief P(X | evidence to date)

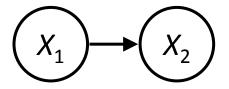
 $B(X_t) = P(X_t | e_{1:t})$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t})P(x_t|e_{1:t})$ • Or compactly:
= $\sum_{x_t} P(X_{t+1}|x_t)P(x_t|e_{1:t})$ $B'(X_{t+1}) = \sum_{x_t} P(X'|x_t)B(x_t)$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes. B' doesn't include the evidence from time t+1

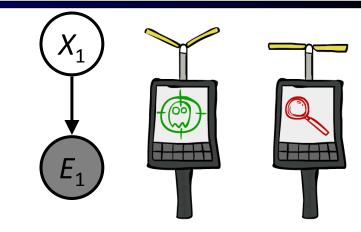


Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

• Then, after evidence comes in:



$$\frac{P(X_{t+1}|e_{1:t+1})}{\propto_{X_{t+1}}} = \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(e_{t+1}|e_{1:t})} \\ \propto_{X_{t+1}} \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(X_{t+1}, e_{t+1}|e_{1:t})}$$

 $= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

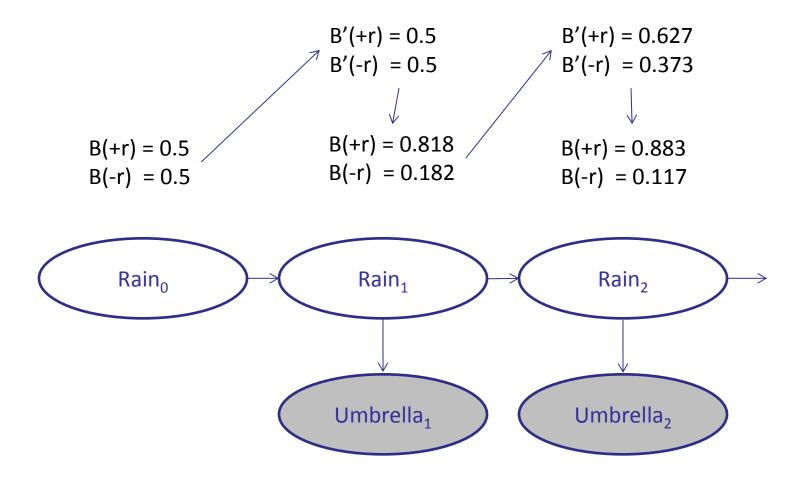
• Or, compactly:

 $B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Weather HMM





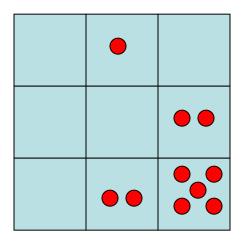
R _t	$R_t = R_{t+1} = P(R_{t+1} R)$	
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	Ut	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

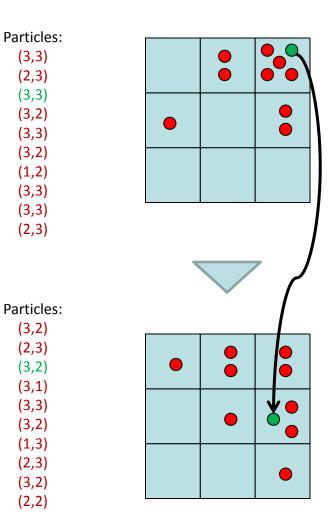


Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)



(3,3)(2,3)(3,3)(3,2)

(3,3)(3,2)(1,2)(3,3)

(3,3) (2,3)

(3,2)(2,3)(3,2)

(3,1)

(3,3)(3,2)

(1,3)

(2,3)(3,2)(2,2)

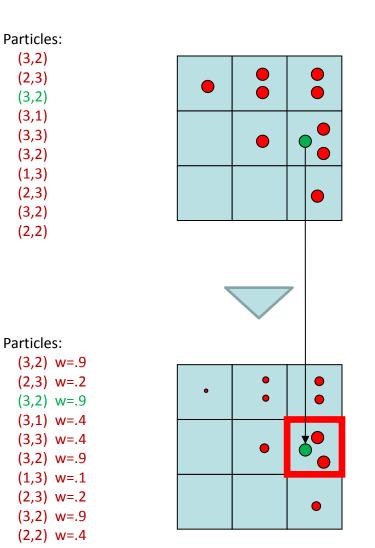
Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x) $B(X) \propto P(e|X)B'(X)$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))



Particle Filtering: Resample

Particles:

(3,2) w=.9

(2,3) w=.2 (3,2) w=.9 (3,1) w=.4 (3,3) w=.4

(3,2) w=.9 (1,3) w=.1

(2,3) w=.2 (3,2) w=.9 (2,2) w=.4

(New) Particles:

(3,2) (2,2)

(3,2) (2,3)

(3,3) (3,2) (1,3) (2,3) (3,2) (3,2)

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

•	•	(
	•	
		~
	•	
	•	
	•	

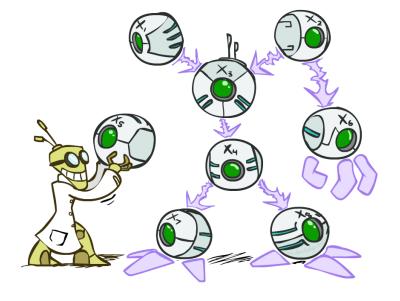
Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

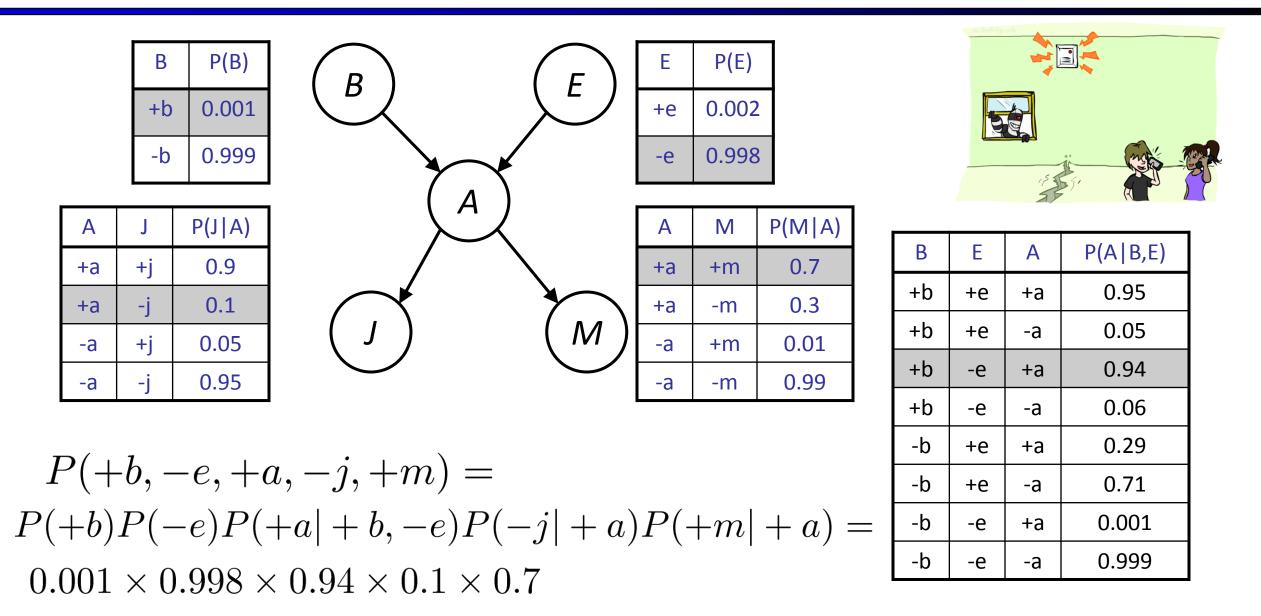
 $P(X|a_1\ldots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



Example: Alarm Network

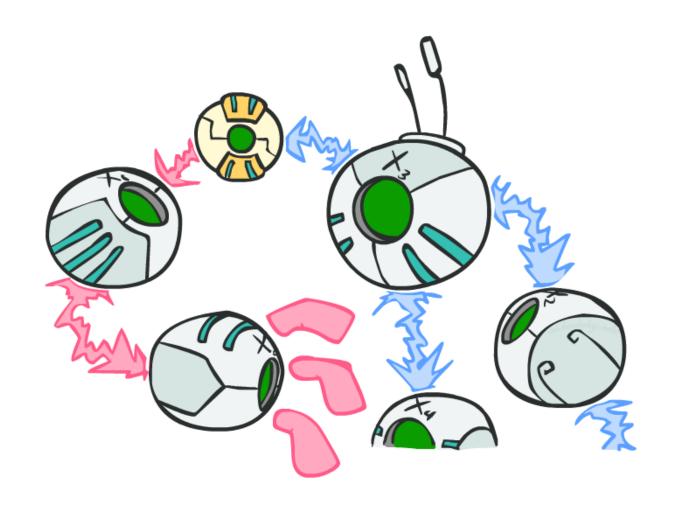


D-separation: Outline

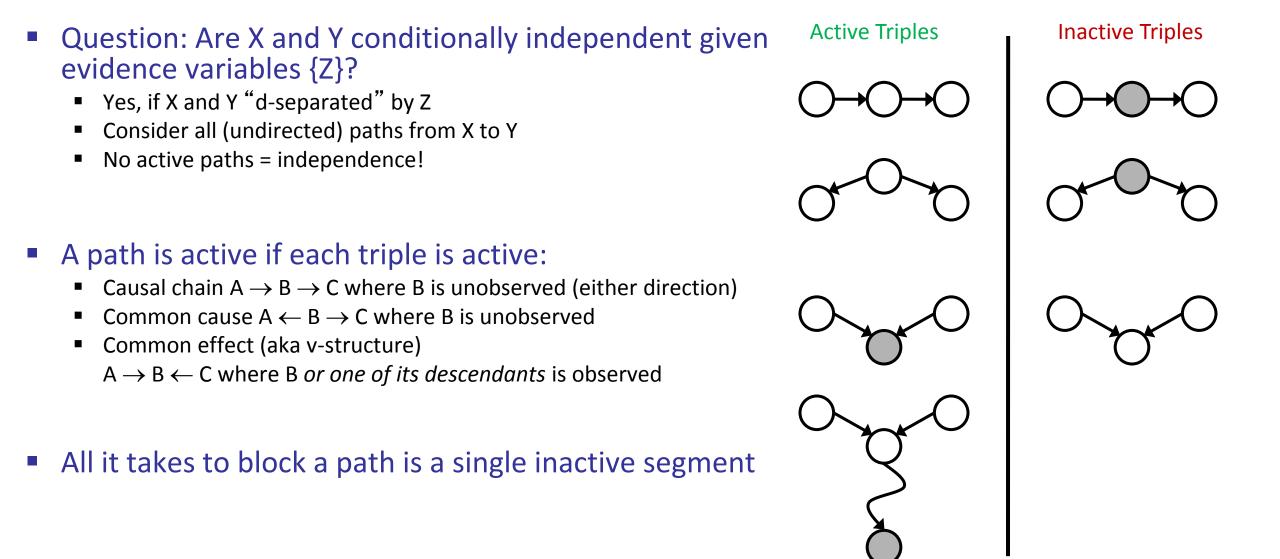
 Study independence properties for triples

 Analyze complex cases in terms of member triples

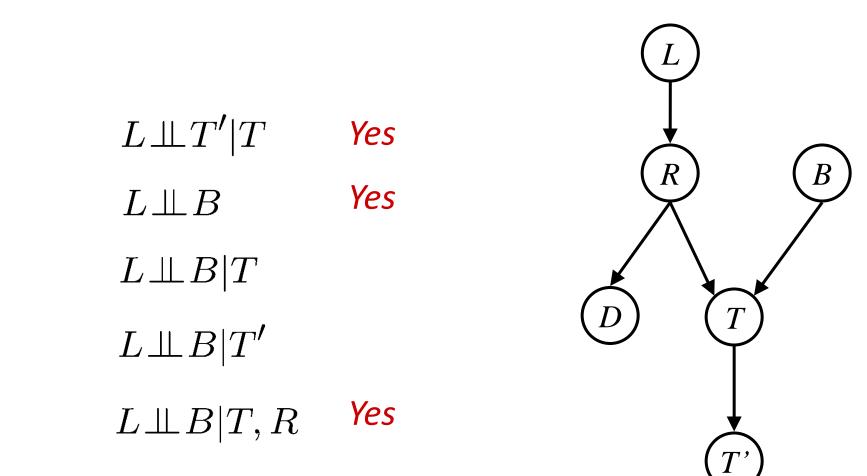
 D-separation: a condition / algorithm for answering such queries



Active / Inactive Paths



Example



Inference by Enumeration in Bayes' Net

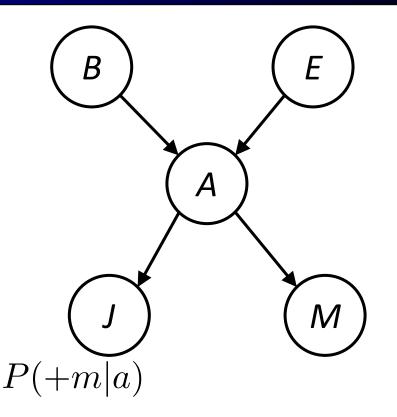
- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

 $P(B \mid +j,+m) \propto_B P(B,+j,+m)$

e,a

$$=\sum_{e,a} P(B, e, a, +j, +m)$$

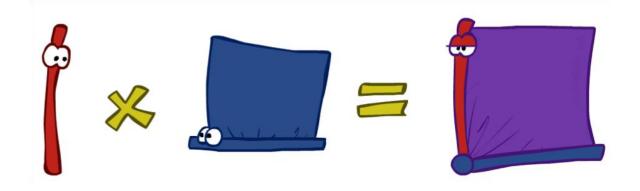
$$=\sum_{e,a} P(B)P(e)P(a|B, e)P(+j|a)P(+m|a)$$



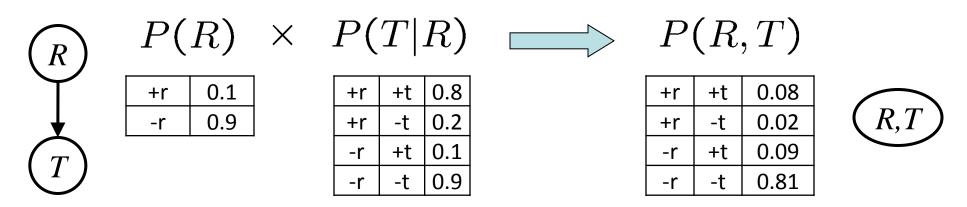
=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(-a|

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved



Example: Join on R



Computation for each entry: pointwise products

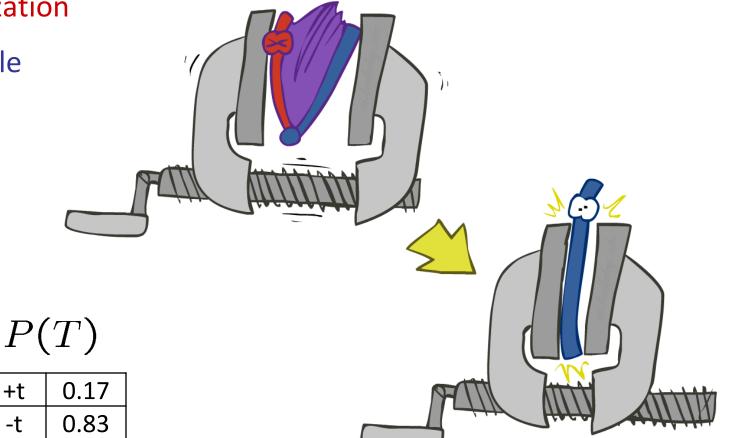
 $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$

Operation 2: Eliminate

+t

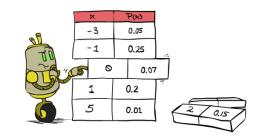
-t

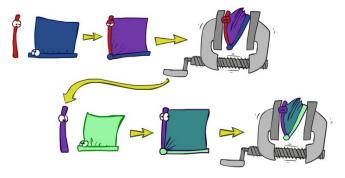
- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:



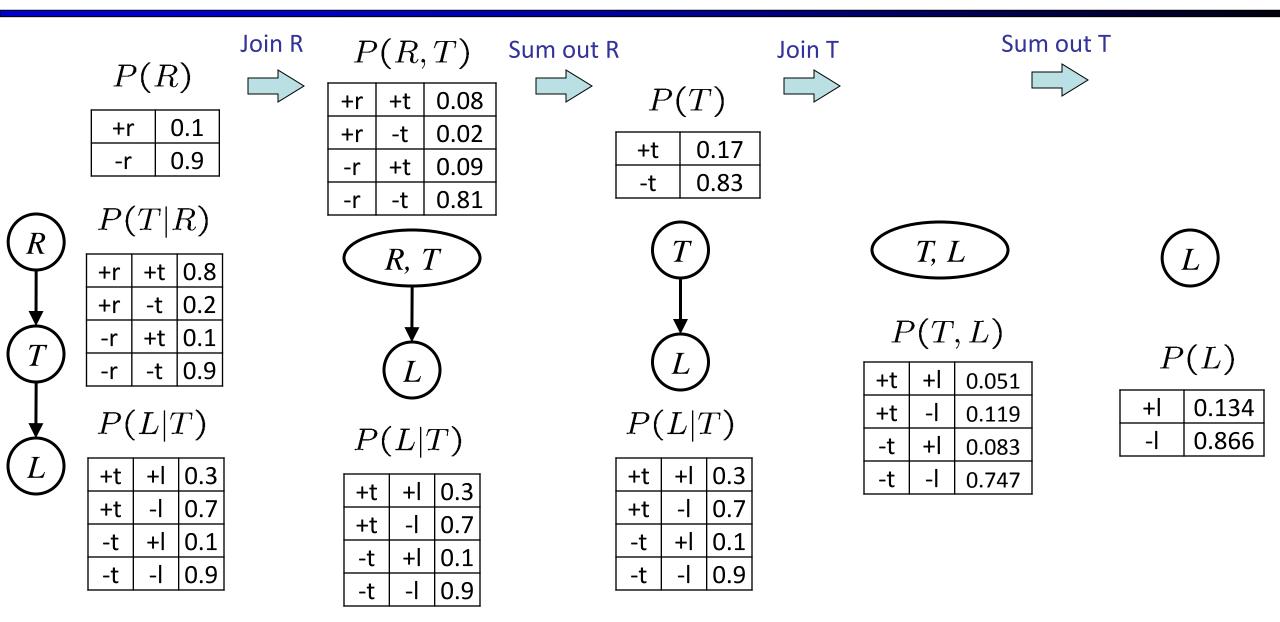
General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize



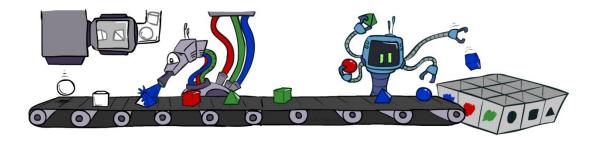


Marginalizing Early! (aka VE)

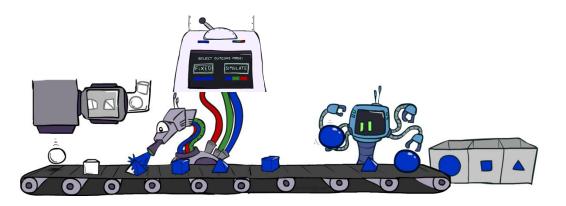


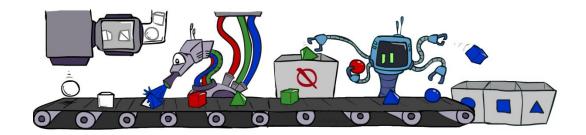
Bayes' Net Sampling Summary

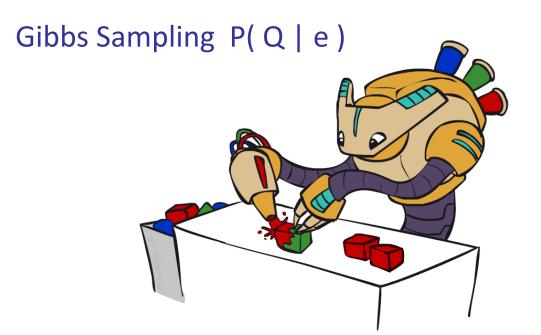
Prior Sampling P



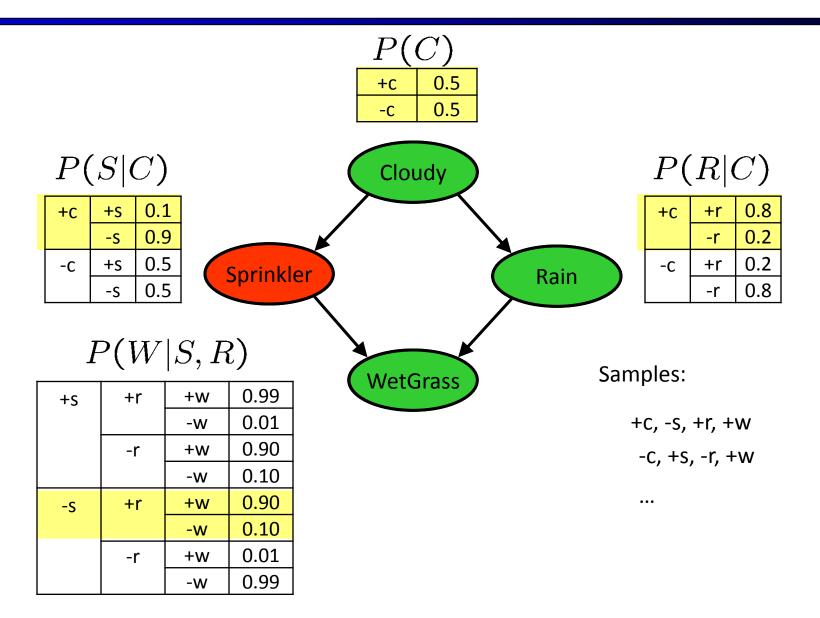
Likelihood Weighting P(Q | e)







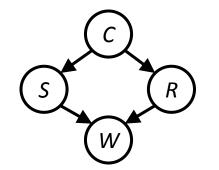
Prior Sampling



Rejection Sampling

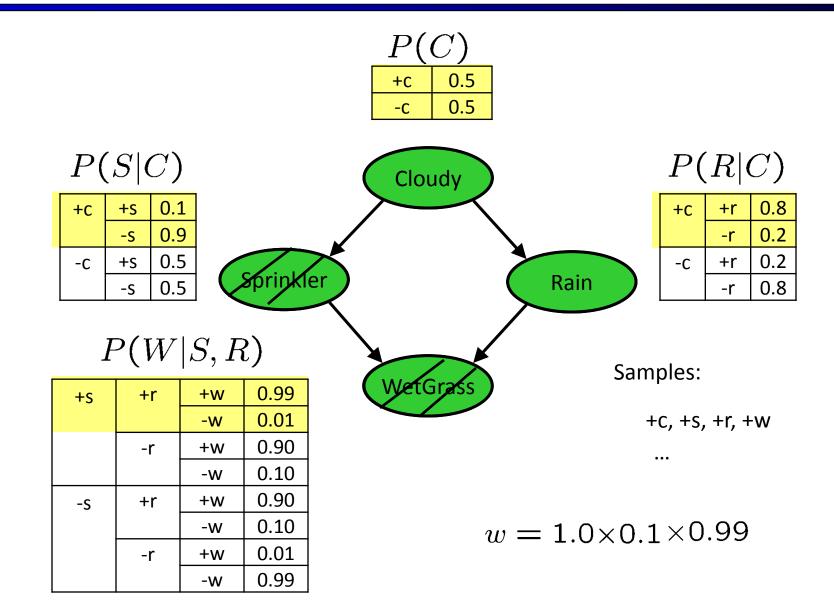
Let's say we want P(C)

- No point keeping all samples around
- Just tally counts of C as we go
- Let's say we want P(C| +s)
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)



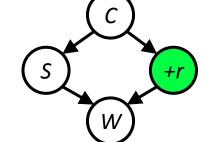
+C, -S, +r, +W +C, +S, +r, +W -C, +S, +r, -W +C, -S, +r, +W -C, -S, -r, +W

Likelihood Weighting

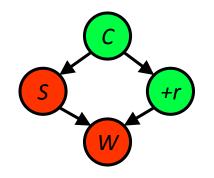


Gibbs Sampling Example: P(S | +r)

Step 1: Fix evidence



- Step 2: Initialize other variables
 - Randomly



Steps 3: Repeat

■ R = +r

- Choose a non-evidence variable X at random
- Resample X from P(X | all other variables)

