
Random Variables 

 A random variable is some aspect of the world about 
which we (may) have uncertainty 

 

 R = Is it raining? 

 T = Is it hot or cold? 

 D = How long will it take to drive to work? 

 L = Where is the ghost? 
 

 We denote random variables with capital letters 
 

 Like variables in a CSP, random variables have domains 
 

 R in {true, false}   (often write as {+r, -r}) 

 T in {hot, cold} 

 D in [0, ) 

 L in possible locations, maybe {(0,0), (0,1), …} 



 Shorthand notation: 

 

 

 

 

 

OK if all domain entries are unique 

 

 

Probability Distributions 

 Unobserved random variables have distributions 

 

 

 

 

 
 

 A distribution is a TABLE of probabilities of values 
 

 A probability (lower case value) is a single number 
 

 

 Must have:                                                 and 

T P 

hot 0.5 

cold 0.5 

W P 

sun 0.6 

rain 0.1 

fog 0.3 

meteor 0.0 



Joint Distributions 

 A joint distribution over a set of random variables: 
 specifies a real number for each assignment (or outcome):  

 
 

 
 
 

 

 Must obey: 

 
 
 

 

 
 Size of distribution if n variables with domain sizes d? 

 

 For all but the smallest distributions, impractical to write out! 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 



Probabilistic Models 

 A probabilistic model is a joint distribution 
over a set of random variables 

 

 Probabilistic models: 
 (Random) variables with domains  
 Assignments are called outcomes 
 Joint distributions: say whether assignments 

(outcomes) are likely 
 Normalized: sum to 1.0 
 Ideally: only certain variables directly interact 

 
 Constraint satisfaction problems: 

 Variables with domains 
 Constraints: state whether assignments are 

possible 
 Ideally: only certain variables directly interact 

 
 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

T W P 

hot sun T 

hot rain F 

cold sun F 

cold rain T 

Distribution over T,W 

Constraint over T,W 



Events 

 An event is a set E of outcomes 
 

 
 

 From a joint distribution, we can 
calculate the probability of any event 

 

 Probability that it’s hot AND sunny? 
 0.4 
 Probability that it’s hot? 

0.4 + 0.1 = 0.5 
 Probability that it’s hot OR sunny? 

0.4 + 0.1 + 0.2 = 0.7 

 Typically, the events we care about 
are partial assignments, like P(T=hot) 
 

  

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 



Marginal Distributions 

 Marginal distributions are sub-tables which eliminate variables  

 Marginalization (summing out): Combine collapsed rows by adding 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

T P 

hot 0.5 

cold 0.5 

W P 

sun 0.6 

rain 0.4 



Conditional Probabilities 

 A simple relation between joint and conditional probabilities 
 In fact, this is taken as the definition of a conditional probability 

 P(a|b) = “probability of a happening given b happened” 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

P(b) P(a) 

P(a,b) 



Conditional Distributions 

 Conditional distributions are probability distributions over 
some variables given fixed values of others 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

W P 

sun 0.8 

rain 0.2 

W P 

sun 0.4 

rain 0.6 

Conditional Distributions 
Joint Distribution 

𝑃 𝑊 = 𝑠𝑢𝑛  𝑇 = ℎ𝑜𝑡) 

𝑃 𝑊 = 𝑟𝑎𝑖𝑛  𝑇 = ℎ𝑜𝑡) 

𝑃 𝑊 = 𝑠𝑢𝑛  𝑇 = 𝑐𝑜𝑙𝑑) 

𝑃 𝑊 = 𝑟𝑎𝑖𝑛  𝑇 = 𝑐𝑜𝑙𝑑) 



Normalization Trick 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

W P 

sun 0.4 

rain 0.6 

T W P 

cold sun 0.2 

cold rain 0.3 

SELECT the joint 
probabilities 
matching the 

evidence 

 

NORMALIZE the 
selection 

(make it sum to one) 

 

 Why does this work? Sum of selection is P(evidence)!  (P(T=c), here) 

 

 

 

 

 

 

 

  



Probabilistic Inference 

 Probabilistic inference: compute a desired 
probability from other known probabilities (e.g. 
conditional from joint) 

 

 We generally compute conditional probabilities  
 P(on time | no reported accidents) = 0.90 

 These represent the agent’s beliefs given the evidence 

 

 Probabilities change with new evidence: 
 P(on time | no accidents, 5 a.m.) = 0.95 

 P(on time | no accidents, 5 a.m., raining) = 0.80 

 Observing new evidence causes beliefs to be updated 



Inference by Enumeration 

 General case: 
 Evidence variables:  
 Query* variable: 
 Hidden variables: 

 
 

All variables 

* Works fine with 
multiple query 
variables, too 

 We want: 
 

 Step 1: Select the 
entries consistent 
with the evidence 

 Step 2: Sum out H to get joint 
of Query and evidence 

 Step 3: Normalize 
 



Inference by Enumeration 

 P(W)? 

 Q = {W}, E = {}, H = {S, T} 

 

 P(W | winter)? 

Q = {W}, E = {S}, H = {T} 

 

 

 P(W | winter, hot)? 

Q = {W}, E = {S, T}, H = {} 

S T W P 

summer hot sun 0.30 

summer hot rain 0.05 

summer cold sun 0.10 

summer cold rain 0.05 

winter hot sun 0.10 

winter hot rain 0.05 

winter cold sun 0.15 

winter cold rain 0.20 

W P(W) 

sun 0.30 + 0.10 + 0.10 + 0.15 = 0.65 

rain 0.05 + 0.05 + 0.05 + 0.20 = 0.35 

W P(W | winter) 

sun (0.10 + 0.15) / 0.50 = 0.50 

rain (0.05 + 0.20) / 0.50 = 0.50 

W P(W | winter, hot) 

sun 0.10 / 0.15 = 2/3 

rain 0.05 / 0.15 = 1/3 



The Product Rule 

 Sometimes have conditional distributions but want the joint 

 

 

 

 



The Chain Rule 

 More generally, can always write any joint distribution as an incremental product of 
conditional distributions 
 
 
 
 
 
 

 Why is this always true? 
 
 



Bayes’ Rule 

 Two ways to factor a joint distribution over two variables: 
 

 
 

 Dividing, we get: 
 

 
 

 Why is this at all helpful? 
 

 Lets us build one conditional from its reverse 
 Often one conditional is tricky but the other one is simple 
 Foundation of many systems we’ll see later (e.g. ASR, MT) 

 
 In the running for most important AI equation! 

 

That’s my rule! 

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


Inference with Bayes’ Rule 

 Example: Diagnostic probability from causal probability: 

 

 

 Example: 
 M: meningitis, S: stiff neck 

 

 

 
 

 

 

 Note: posterior probability of meningitis still very small: 0.008 

 Note: you should still get stiff necks checked out!  Why? 

Example 
givens 



Independence 

 Two variables are independent in a joint distribution if: 
 

 

 

 

 

 Says the joint distribution factors into a product of two simple ones 

 Usually variables aren’t independent! 

 

 Can use independence as a modeling assumption 
 Independence can be a simplifying assumption 

 Empirical  joint distributions: at best “close” to independent 

 What could we assume for {Weather, Traffic, Cavity}? 

 

 Independence is like something from CSPs: what? 



Example: Independence? 

T W P 

hot sun 0.4 

hot rain 0.1 

cold sun 0.2 

cold rain 0.3 

T W P 

hot sun 0.5 * 0.6 = 0.3 

hot rain 0.5 * 0.4 = 0.2 

cold sun 0.5 * 0.6 = 0.3 

cold rain 0.5 * 0.4 = 0.2 

T P 

hot 0.4 + 0.1 = 0.5 

cold 0.2 + 0.3 = 0.5 

W P 

sun 0.4 + 0.2 = 0.6 

rain 0.1 + 0.3 = 0.4 



Conditional Independence 

 P(Toothache, Cavity, Catch) 
 

 If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache: 
 P(+catch | +toothache, +cavity) = P(+catch | +cavity) 

 
 The same independence holds if I don’t have a cavity: 

 P(+catch | +toothache, -cavity) = P(+catch| -cavity) 

 
 Catch is conditionally independent of Toothache given Cavity: 

 P(Catch | Toothache, Cavity) = P(Catch | Cavity) 

 

 Equivalent statements: 
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity) 
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 
 One can be derived from the other easily 



Conditional Independence and the Chain Rule 

 Chain rule:  
 

 

 Trivial decomposition: 
 

 
 

 
 

 With assumption of conditional independence: 
 
 
 
 

 Bayes’ nets / graphical models help us express conditional independence assumptions 
 



Reasoning over Time or Space 

 Often, we want to reason about a sequence of observations 
 

 Speech recognition 
 

 Robot localization 
 

 User attention 
 

 Medical monitoring 

 

 Need to introduce time (or space) into our models 



Markov Models 

 Value of X at a given time is called the state 

 

 

 

 

 

 

 Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities) 

 Stationarity assumption: transition probabilities the same at all times 

 Same as MDP transition model, but no choice of action 

X2 X1 X3 X4 



Joint Distribution of a Markov Model 

 Joint distribution: 

 
 

 More generally: 
 

 

 
 Questions to be resolved: 

 Does this indeed define a joint distribution? 

 Can every joint distribution be factored this way, or are we making some assumptions 
about the joint distribution by using this factorization? 

X2 X1 X3 X4 



Chain Rule and Markov Models 

 From the chain rule, every joint distribution over                                 can be written as: 

 

 

 

 Assuming that 

                                                                    and 

 

    results in the expression posited on the previous slide:  

 
 

X2 X1 X3 X4 



Example Markov Chain: Weather 

 Initial distribution: 1.0 sun 

 

 

 

 What is the probability distribution after one step? 

rain sun 

0.9 

0.7 

0.3 

0.1 



Hidden Markov Models 

 Markov chains not so useful for most agents 
 Need observations to update your beliefs 

 

 Hidden Markov models (HMMs) 
 Underlying Markov chain over states X 

 You observe outputs (effects) at each time step 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 



Example: Weather HMM 

Rt Rt+1 P(Rt+1|Rt) 

+r +r 0.7 

+r -r 0.3 

-r +r 0.3 

-r -r 0.7 

Umbrellat-1 

Rt Ut P(Ut|Rt) 

+r +u 0.9 

+r -u 0.1 

-r +u 0.2 

-r -u 0.8 

Umbrellat Umbrellat+1 

Raint-1 Raint Raint+1 

 An HMM is defined by: 
 Initial distribution: 
 Transitions: 
 Emissions: 



Joint Distribution of an HMM 

 Joint distribution: 

 
 

 

 More generally: 
 

 

 Questions to be resolved: 
 Does this indeed define a joint distribution? 

 Can every joint distribution be factored this way, or are we making some assumptions about the 
joint distribution by using this factorization? 

X5 X2 

E1 

X1 X3 

E2 E3 E5 



Implied Conditional Independencies 

 Many implied conditional independencies, e.g., 

 

 To prove them 

 Approach 1: follow similar (algebraic) approach to what we did in the 
Markov models lecture 

 Approach 2: directly from the graph structure (3 lectures from now) 

 Intuition: If path between U and V goes through W, then 

X2 

E1 

X1 X3 

E2 E3 

[Some fine print later] 



Passage of Time 

 Assume we have current belief P(X | evidence to date) 

 

 

 Then, after one time step passes: 

 

 

 

 

 

 

 Basic idea: beliefs get “pushed” through the transitions 
 With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes. B’ doesn’t include the evidence from time t+1 

 

X2 X1 

 Or compactly: 



Observation 

 Assume we have current belief P(X | previous evidence): 

 

 

 Then, after evidence comes in: 

 

 

 

 

 

 

 

 Or, compactly: 

 

 

 

E1 

X1 

 Basic idea: beliefs “reweighted” 
by likelihood of evidence 

 Unlike passage of time, we have 
to renormalize 

 



Example: Weather HMM 

Rt Rt+1 P(Rt+1|Rt) 

+r +r 0.7 

+r -r 0.3 

-r +r 0.3 

-r -r 0.7 

Rt Ut P(Ut|Rt) 

+r +u 0.9 

+r -u 0.1 

-r +u 0.2 

-r -u 0.8 

Umbrella1 Umbrella2 

Rain0 Rain1 Rain2 

B(+r) = 0.5 
B(-r)  = 0.5 

B’(+r) = 0.5 
B’(-r)  = 0.5 

B(+r) = 0.818 
B(-r)  = 0.182 

B’(+r) = 0.627 
B’(-r)  = 0.373 

B(+r) = 0.883 
B(-r)  = 0.117 



Particle Filtering 

0.0 0.1 

0.0 0.0 

0.0 

0.2 

0.0 0.2 0.5 

 Filtering: approximate solution 
 

 Sometimes |X| is too big to use exact inference 
 |X| may be too big to even store B(X) 
 E.g. X is continuous 

 

 Solution: approximate inference 
 Track samples of X, not all values 
 Samples are called particles 
 Time per step is linear in the number of samples 
 But: number needed may be large 
 In memory: list of particles, not states 

 

 This is how robot localization works in practice 
 

 Particle is just new name for sample 



Particle Filtering: Elapse Time 

 Each particle is moved by sampling its next 
position from the transition model 

 

 

 

 This is like prior sampling – samples’ frequencies 
reflect the transition probabilities 

 

 Here, most samples move clockwise, but some move in 
another direction or stay in place 

 

 

 This captures the passage of time 
 If enough samples, close to exact values before and 

after (consistent) 

 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3) 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 



 Slightly trickier: 
 

 Don’t sample observation, fix it 
 

 Similar to likelihood weighting, downweight 
samples based on the evidence 

 

 

 

 
 

 As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e)) 

Particle Filtering: Observe 

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 



Particle Filtering: Resample 

 Rather than tracking weighted samples, we 
resample 

 

 N times, we choose from our weighted sample 
distribution (i.e. draw with replacement) 

 

 This is equivalent to renormalizing the 
distribution 

 

 Now the update is complete for this time step, 
continue with the next one 

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2) 



Bayes’ Net Semantics 

 A directed, acyclic graph, one node per random variable 
 

 A conditional probability table (CPT) for each node 
 

 A collection of distributions over X, one for each combination 
of parents’ values 
 
 

 

 Bayes’ nets implicitly encode joint distributions 
 

 As a product of local conditional distributions 
 

 To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together: 
 

 
 



Example: Alarm Network 

B P(B) 

+b 0.001 

-b 0.999 

E P(E) 

+e 0.002 

-e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 

+b +e -a 0.05 

+b -e +a 0.94 

+b -e -a 0.06 

-b +e +a 0.29 

-b +e -a 0.71 

-b -e +a 0.001 

-b -e -a 0.999 

A J P(J|A) 

+a +j 0.9 

+a -j 0.1 

-a +j 0.05 

-a -j 0.95 

A M P(M|A) 

+a +m 0.7 

+a -m 0.3 

-a +m 0.01 

-a -m 0.99 

B E 

A 

M J 



D-separation: Outline 

 Study independence 
properties for triples 

 

 Analyze complex cases in 
terms of member triples 

 

 D-separation: a condition / 
algorithm for answering 
such queries 

 



Active / Inactive Paths 

 Question: Are X and Y conditionally independent given 
evidence variables {Z}? 
 Yes, if X and Y “d-separated” by Z 
 Consider all (undirected) paths from X to Y 
 No active paths = independence! 

 

 
 A path is active if each triple is active: 

 Causal chain A  B  C where B is unobserved (either direction) 
 Common cause A  B  C where B is unobserved 
 Common effect (aka v-structure) 
 A  B  C where B or one of its descendants is observed 
  

 
 All it takes to block a path is a single inactive segment 

 
  

Active Triples Inactive Triples 



Example 

R 

T 

B 

D 

L 

T’ 

Yes 

Yes 

Yes 



Inference by Enumeration in Bayes’ Net 

 Given unlimited time, inference in BNs is easy 
 

 Reminder of inference by enumeration by example: 
B E 

A 

M J 



Operation 1: Join Factors 

 First basic operation: joining factors 

 Combining factors: 

 Just like a database join 

 Get all factors over the joining variable 

 Build a new factor over the union of the variables 
involved 

 

 Example: Join on R 

 

 

 

 

 

 

 

 Computation for each entry: pointwise products 

+r 0.1 
-r 0.9 

+r +t 0.8 
+r -t 0.2 
-r +t 0.1 
-r -t 0.9 

+r +t 0.08 
+r -t 0.02 
-r +t 0.09 
-r -t 0.81 T 

R 

R,T 



Operation 2: Eliminate 

 Second basic operation: marginalization 
 

 Take a factor and sum out a variable 
 

 Shrinks a factor to a smaller one 
 

 A projection operation 
 

 Example: 

 

 
 +r +t 0.08 
+r -t 0.02 
-r +t 0.09 
-r -t 0.81 

+t 0.17 
-t 0.83 



General Variable Elimination 

 Query: 

 

 Start with initial factors: 
 Local CPTs (but instantiated by evidence) 

 

 While there are still hidden variables 
(not Q or evidence): 
 Pick a hidden variable H 

 Join all factors mentioning H 

 Eliminate (sum out) H 

 

 Join all remaining factors and normalize 



Marginalizing Early! (aka VE) 

Sum out R 

T 

L 

+r +t 0.08 
+r -t 0.02 
-r +t 0.09 
-r -t 0.81 

+t +l 0.3 
+t -l 0.7 
-t +l 0.1 
-t -l 0.9 

+t 0.17 
-t 0.83 

+t +l 0.3 
+t -l 0.7 
-t +l 0.1 
-t -l 0.9 

T 

R 

L 

+r 0.1 
-r 0.9 

+r +t 0.8 
+r -t 0.2 
-r +t 0.1 
-r -t 0.9 

+t +l 0.3 
+t -l 0.7 
-t +l 0.1 
-t -l 0.9 

Join R 

R, T 

L 

T, L L 

+t +l 0.051 

+t -l 0.119 

-t +l 0.083 

-t -l 0.747 

+l 0.134 
-l 0.866 

Join T Sum out T 



Bayes’ Net Sampling Summary 

 Prior Sampling  P 

 
 

 

 

 
 

 Likelihood Weighting  P( Q | e) 

 Rejection Sampling  P( Q | e ) 

 
 

 

 

 
 

 Gibbs Sampling  P( Q | e ) 



Prior Sampling 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 

+c 0.5 
-c 0.5 

+c 
 

+s 0.1 

-s 0.9 

-c 
 

+s 0.5 
-s 0.5 

+c 
 

+r 0.8 

-r 0.2 

-c 
 

+r 0.2 
-r 0.8 

+s 
 
 
 

+r 
 

+w 0.99 

-w 0.01 

-r 
 

+w 0.90 

-w 0.10 

-s 
 
 
 

+r 
 

+w 0.90 

-w 0.10 

-r 
 

+w 0.01 

-w 0.99 

Samples: 

+c, -s, +r, +w 

-c, +s, -r, +w 

… 



 +c, -s, +r, +w 
 +c, +s, +r, +w 
 -c, +s, +r,  -w 
 +c, -s, +r, +w 
 -c,  -s,  -r, +w 

Rejection Sampling 

 Let’s say we want P(C) 

 No point keeping all samples around 

 Just tally counts of C as we go 
 

 Let’s say we want P(C| +s) 

 Same thing: tally C outcomes, but 
ignore (reject) samples which don’t 
have S=+s 

 This is called rejection sampling 

 It is also consistent for conditional 
probabilities (i.e., correct in the limit) 

S R 

W 

C 



Likelihood Weighting 

+c 0.5 

-c 0.5 

+c 
 

+s 0.1 
-s 0.9 

-c 
 

+s 0.5 

-s 0.5 

+c 
 

+r 0.8 
-r 0.2 

-c 
 

+r 0.2 

-r 0.8 

+s 
 
 
 

+r 
 

+w 0.99 
-w 0.01 

-r 
 

+w 0.90 
-w 0.10 

-s 
 
 
 

+r 
 

+w 0.90 
-w 0.10 

-r 
 

+w 0.01 

-w 0.99 

Samples: 

+c, +s, +r, +w 

… 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 



 Step 2: Initialize other variables  
 Randomly 

Gibbs Sampling Example: P( S | +r) 

 Step 1: Fix evidence 
 R = +r 

 
 

 

 Steps 3: Repeat 
 Choose a non-evidence variable X at random 

 Resample X from P( X | all other variables) 

 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 

S +r 

W 

C 


