Random Variables

" Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R=lIsitraining?

= T=lIsithotorcold?

= D =How long will it take to drive to work?
= | =Whereis the ghost?

= We denote random variables with capital letters

= |jke variables in a CSP, random variables have domains

= Rin{true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, o)

= Lin possible locations, maybe {(0,0), (0,1), ...}



Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W = rain) = 0.1

Ve P(X =2)>0

and

 P(X=uz)=1



Joint Distributions

" Ajoint distribution over a set of random variables: X1, X5,...Xp

specifies a real number for each assignment (or outcome):

P(X1=x1,X0=1xo,... Xy, = xn)

P(T, W)
P(xq,xo,...2n)
T W P
= Must obey: P(x1,25,...2n) >0 hot | sun | 0.4
hot | rain 0.1
Z P(ﬂjla o, .. xn) =1 cold | sun 0.2
(21,22,...n) cold | rain | 0.3

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!




Probabilistic Models

A probabilistic model is a joint distribution Distribution over TW

over a set of random variables

T W P
Probabilistic models: hot sun 0.4
= (Random) variables with domains hot rain 0.1
= Assignments are called outcomes
= Joint distributions: say whether assignments cold >un 0.2
(outcomes) are likely cold rain 0.3
= Normalized: sum to 1.0

. _ . : : :
Ideally: only certain variables directly interact Constraint over TW

Constraint satisfaction problems: T W
= Variables with domains

= Constraints: state whether assignments are

possible hot rain
= |deally: only certain variables directly interact

hot sun

cold sun

- [ ||| ©

cold rain




Events

= An event is a set E of outcomes

P(E)= )  P(z1...zn)

(ml...mn)eE

" From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
0.4

= Probability that it’s hot?
04+0.1=05

= Probability that it’s hot OR sunny?
04+0.1+0.2=0.7

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

—
P(t) =3 P(t,s)

—-
P(s) = Z P(t,s)
t

P(X1=uz1) =) P(X1=u11,Xp =)

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

= P(a|b) = “probability of a happening given b happened”
P(a,b
P(alb) = 2420
P(b)
P(a)
P(T, W)

LI L . . _P(W=sT=c) 02
ot [ wn | 0a | FPV=eT=0=""p0 5" =55 =04
hot rain 0.1 -
cold sun 0.2 =P(W=s5,T=c)+P(W=r,T=c)
cold rain 0.3 —02+03 =0.5




Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

P(W|T = hot) P(T,W)
Y
W P
T W P

sun 0.8 P(W =sun|T = hot)
- hot sun 0.4
~ rain 0.2 P(W =rain|T = hot) ot o 01
E: P(W|T = cold) cold | sun 0.2

W p cold rain 0.3

sun 0.4 P(W =sun|T = cold)

rain 0.6 P(W =rain|T = cold)




Normalization Trick

P(T, W) SELECT the joint
probabilities
T W P matching the
hot sun 0.4 evidence
hot rain 0.1 —l
cold sun 0.2
cold rain 0.3

P(c, W)

T

W

cold

sun

0.2

cold

rain

0.3

NORMALIZE the
selection
(make it sum to one)

ﬂ

= Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

P(x1,x2)
>oaq P, 72)

P(xy,22) _

P(x1|zo) =

P(x2)

P(W|T = ¢)
w P
sun 0.4
rain 0.6




Probabilistic Inference

= Probabilistic inference: compute a desired !‘\A Y

probability from other known probabilities (e.g.
conditional from joint) ///

= We generally compute conditional probabilities
= P(on time | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5a.m.) =0.95 '
| - o . Ci\‘\% ‘_‘ "

= P(on time | no accidents, 5 a.m., raining) = 0.80 L

= QObserving new evidence causes beliefs to be updated




Inference by Enumeration

=  General case:
=  Evidence variables:
= Query* variable: Q

= Hidden variables: Hi...H,
= Step 1: Select the
entries consistent
with the evidence
Peod
0.05
0.25
0.07
0z |
= —
0.01 w

P(Q,e1...e;) = Z P(Qahl.

Ei1...E,=e1...¢e

X1, Xo, ... Xn

All variables

Step 2: Sum out H to get joint
of Query and evidence

X1, Xo,...Xn

We want:

. hr,e1...ep)

_/

* Works fine with
multiple query
variables, too

P(Qle1 .. .ex)

= Step 3: Normalize

1
><_
A

Zzzp(Qael"'ek)

1

P(Qle1--ex) = - P(Q,e1---ek)

VA



Inference by Enumeration

= P(W)?
Q={W}E={}LH={T}

= P(W | winter)?

Q={W}, E=1{5}, H=1{T}

= P(W | winter, hot)?
Q={W}L E={S, T, H={}

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

W P(W)

sun [0.30+0.10+0.10+0.15=0.65
rain | 0.05+ 0.05+ 0.05+0.20=0.35
W P(W | winter)

sun (0.10 + 0.15) / 0.50=0.50
rain (0.05+0.20) /0.50=0.50

W P(W | winter, hot)

sun 0.10/0.15=2/3

rain 0.05/0.15=1/3




The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(zly) = P(z,y) <> rPaws=

~ =l




The Chain Rule

= More generally, can always write any joint distribution as an incremental product of
conditional distributions

P(x1,x0,23) = P(x1)P(zz|x1)P(x3|z1, 2)

P(z1,22,...zn) = || P(zilz1 ... 2i_1)
7

= Why is this always true?

P(xo,x1) P(xs, 21, 29)

P(;’I.‘l. X9, .‘_'I.‘B) = P(;‘rl)P(;’Fg|:.'I?1)P(?-r3|?r1' "-":";2) — P(Il) P(-rl) P(’I-‘1 "I-‘Q)



Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(xz|y)P(y) = P(y|z)P(x)

That’s my rule! }

= Dividing, we get:

P(aly) = 292 by

P(y)
= Why is this at all helpful?

= |Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

= |n the running for most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P (effect)

= Example:

= M: meningitis, S: stiff neck

P(+m) = 0.0001 o

xample
P(+S‘ + m) =08 givens
P(+s| —m) =0.01_

P(+m| +s) = P(ts| +m)P(+m) _ P(+s| +m)P(+m) 0.8 x 0.0001

P(+s) " P(+s|+m)P(+m) + P(+s| — m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small: 0.008
= Note: you should still get stiff necks checked out! Why?



Independence

= Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)
X1UlY

Vo,y P(x,y) = P(x)P(y)

= Says the joint distribution factors into a product of two simple ones
= Usually variables aren’t independent!

= Can use independence as a modeling assumption
= Independence can be a simplifying assumption
=  Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity}?

" |ndependence is like something from CSPs: what?



Example: Independence?

P(T)
T P
hot | 0.4+0.1=0.5
P (T, W) cold | 0.2+0.3=0.5 Py (T, W) = P(T)P(W)
T W P T W P
hot sun 0.4 hot | sun | 0.5*0.6=0.3
hot rain 0.1 hot | rain | 0.5*0.4=0.2
cold sun 0.2 cold [ sun | 0.5*0.6=0.3
cold rain 0.3 P%VV) cold | rain | 0.5*0.4=0.2
W P

sun | 0.4+0.2=0.6
rain | 0.1+0.3=0.4




Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence and the Chain Rule

" Chain rule: P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3] X1, X2) ...

= Trivial decomposition:

P(Traffic, Rain,Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain,Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

= Bayes’ nets / graphical models help us express conditional independence assumptions



Reasoning over Time or Space

= Often, we want to reason about a sequence of observations
= Speech recognition
= Robot localization
= User attention

= Medical monitoring

"= Need to introduce time (or space) into our models



Markov Models

= Value of X at a given time is called the state

s O e

P(X1) P(Xt|X¢—1)

» Parameters: called transition probabilities or dynamics, specify how the state
evolves over time (also, initial state probabilities)

= Stationarity assumption: transition probabilities the same at all times
= Same as MDP transition model, but no choice of action



Joint Distribution of a Markov Model

P(X1)  P(XyX¢—1)
= Joint distribution:

P(X1, X2, X5, X4) = P(X1)P(X2|X1)P(X5| X2)P(X4| X5)
" More generally:
P(X1,Xs,...,X7)=P(X1)P(X2|X1)P(X3|X2) ... P(X7|X71_1)

= P(X1) | | P(X¢| Xi—1)

. t=2
= Questions to be resolved:

= Does this indeed define a joint distribution?

= Can every joint distribution be factored this way, or are we making some assumptions
about the joint distribution by using this factorization?



Chain Rule and Markov Models

= From the chain rule, every joint distribution over X, X5, X3, X, can be written as:

P(X1, X2, X3, X4) = P(X1)P(X2|X1)P(X3]| X1, Xo) P(X4| X1, X2, X3)

= Assuming that

Xg Al X1 | X2 and X4 AL Xl,XQ ’ X3

results in the expression posited on the previous slide:

P(X1, X2, X5, X4) = P(X1)P(X2|X1)P(X3]| X)) P(X4| X5)



Example Markov Chain: Weather

= |nitial distribution: 1.0 sun 0.3 0-9
0.7
0.1

" What is the probability distribution after one step?

P(Xy =sun) = +
P(Xo, =sun| Xy = rain)P(X1 = rain)

+ 0.3-0.0=0.9



Hidden Markov Models

= Markov chains not so useful for most agents
= Need observations to update your beliefs

= Hidden Markov models (HMMs) O
= Underlying Markov chain over states X 0
= You observe outputs (effects) at each time step @

OasOnOn Ol




Example: Weather HMM

P(X; | X¢-1)

Rain,_;

Rain,

Umbrella, , Umbrella, Umbrella,,,

P(E; | Xt)

= An HMM is defined by:

= |nijtial distribution:
" Transitions:
" EFmissions:

P(X1)
P(X; | Xiq)
P(E; | X3)

Rain,,,

o | [

Ri | Rut | P(RutIR}) R, U, | P(U,R))
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8




Joint Distribution of an HMM

-

= Joint distribution:

P(X1, E1, X5, Es, X5, F3) = P(X1)P(E1|X1)P(X2|X1)P(E»| X2)P(X3]| Xo) P(E5| X3)

= More generally: -

P(X1,Er,..., X1, Br) = P(X1)P(E1|X1) [ [ P(X¢|Xio1) P(E| X,)

_ t=2
= Questions to be resolved:

= Does this indeed define a joint distribution?

= Can every joint distribution be factored this way, or are we making some assumptions about the
joint distribution by using this factorization?



Implied Conditional Independencies

DEOEOS

= Many implied conditional independencies, e.g.,
El AL X27 E27X37 ES ‘ Xl
" To prove them

» Approach 1: follow similar (algebraic) approach to what we did in the
Markov models lecture

" Approach 2: directly from the graph structure (3 lectures from now)
" |[ntuition: If path between U and V goes through W, then U . V \ W Isome fine print later]



Passage of Time

= Assume we have current belief P(X | evidence to date)

OnO,
B(Xp) = P(Xile1)

= Then, after one time step passes:

P(Xt+1’€1:t) — ZP(Xt+1,$t|€1:t)

Lt

—ZP Xt_|_1‘$t,€1 t) ($t’61;t) " Orcompactly:

(X P(X'
= ZP Xﬂ—l’a?t) ($t’€1:t) w+1) Z ) B(z)

= Basicidea: bellefs get ‘oushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it includes. B’ doesn’t include the evidence from time t+1



Observation

= Assume we have current belief P(X | previous evidence):

B'(Xi41) = P(Xiq1ler)

= Then, after evidence comes in:

P(Xiiqlerir1) = P(Xig1,erq1lers)/Pletrilert)

XXiq1 P(Xt+1,€t+1\€1:t)
— P(€t+1 61:t,Xt+1)P(Xt+1\€1:t)
— P(€t+1 Xt+1)P(Xt—|—1’61:t)

= Basicidea: beliefs “reweighted”
" Or, compactly: by likelihood of evidence
B(Xi11) xx,,, Plery1]|Xiy1)B (Xig1) = Unlike passage of time, we have
to renormalize



Example: Weather HMM

B(+r) = 0.5
B(-r) =0.5

B’(+r) = 0.5 B’(+r) = 0.627
B’(-r) =0.5 B’(-r) =0.373
B(+r) = 0.818 B(+r) = 0.883
B(-r) =0.182 B(-r) =0.117
Rain, Rain,

Umbrella, Umbrella,

e [

Re | Rus | P(RealR) | Ry | Up | P(UIRY)
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8




Particle Filtering

Filtering: approximate solution

Sometimes | X]| is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference

= Track samples of X, not all values

= Samples are called particles

= Time per step is linear in the number of samples
But: number needed may be large
= |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample

0.0 | 0.1 | 00

0.0 | 0.0 | 02

00 | 02 | 05
O

o0

00 | ¢




Particle Filtering: Elapse Time

= Each particle is moved by sampling its next
position from the transition model

' = sample(P(X'|z))

= This is like prior sampling — samples’ frequencies
reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

* This captures the passage of time

= |f enough samples, close to exact values before and
after (consistent)

Particles:

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

o0\
3] I
o |3°




Particle Filtering: Observe

= Slightly trickier:

Don’t sample observation, fix it

Similar to likelihood weighting, downweight
samples based on the evidence

w(x) = P(e|x)
B(X) «x P(e|X)B/'(X)
As before, the probabilities don’t sum to one,

since all have been downweighted (in fact they
now sum to (N times) an approximation of P(e))

Particles:

N W
S

—~ e~~~ — — —~ —
‘N\(.U‘N\I—\\UU‘UU\UU‘UJ\
NN W WNWE N W
—_— — — — — — — — — ~—

Particles:
(3, 2) w= 9
(2,3

EEEEEEEE

NOUNFWWw
MR WWNWER N
-l>ko|\)v—\ko-l>4>ko




Particle Filtering: Resample

= Rather than tracking weighted samples, we
resample

= N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

= This is equivalent to renormalizing the
distribution

= Now the update is complete for this time step,
continue with the next one

Particles:

(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=4

4

(New) Particles:

(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Bayes’ Net Semantics

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents values

P(X|ay...an)
= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

mn
P(z1,22,...2n) = || P(x|parents(X;))
=1




Example: Alarm Network

B | P(B) E | P(E)
+b | 0.001 +e | 0.002
-b | 0.999 -e | 0.998
A | J | PU|A) ° A | M |PM|A)
va | 4 | 09 P R p B | E| A | PA|BE)
+a | - 0.1 +a | -m 0.3 th | +e | +a 0-95
a | 4 | 005 = +m | ool +b | +e | -a 0.05
a | 4 | 095 a | -m | 099 ol Il IR
+b | -e -a 0.06
) -b | +e | +a 0.29
| | . S
P( | b) 67 |Cl, Ja—l_m) - b | +e | -a 0.71
P(+b)P(~e)P(+a] + b, ~€)P(~j| + a)P(+m| + a) = [« [ss | oom
b | -e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7



D-separation: Outline

= Study independence
properties for triples

= Analyze complex cases in
terms of member triples

= D-separation: a condition /
algorithm for answering
such queries




Active / Inactive Paths

= Question: Are X and Y conditionally independent given  Active Triples Inactive Triples
evidence variables {Z}?
= Yes,if Xand Y “d-separated” by Z O—PO—PO
» Consider all (undirected) paths from Xto Y
= No active paths = independence! C

= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A < B — C where B is unobserved
= Common effect (aka v-structure)
A — B <~ C where B or one of its descendants is observed

= All it takes to block a path is a single inactive segment

~d{ g



Example

LUTT  VYes
LI B Yes
L1 B|T

L1 B|T

LU B|T,R Yes



Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:
P(B | +j,+m) x5 P(B,+j,+m) 0
—ZP (B,e,a,+j,+m)
= ZP P(a|B,e)P(+j|a)P(+mla)

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +¢e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B,—e)P(+j| — a)P(+m| — a)



Operation 1: Join Factors

= First basic operation: joining factors

= Combining factors:
= Just like a database join % —1
= Get all factors over the joining variable

= Build a new factor over the union of the variables
involved

= Example:JoinonR

R P(R) x P(T|R) =——> P(R,T)

+r 0.1 +r | +t (0.8 +r | +t | 0.08

-r 0.9 +r | -t {0.2 +r | -t | 0.02

a or | +t |0.1 -r | +t | 0.09
-r| -t [0.9 -r | -t | 0.81

= Computation for each entry: pointwise products V?“, t: P(’I“, t) = P(?“) . P(t|7”)




Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable
» Shrinks a factor to a smaller one

= A projection operation

= Example:
P(R,T) BT
+r | +t | 0.08 sum R ( )

+r | -t | 0.02 |:> +t

-r | +t | 0.09 -1
-r| -t |0.81




General Variable Elimination

Query: P(Q|E1 = e1,... B = ey)

Start with initial factors:
= Local CPTs (but instantiated by evidence)

While there are still hidden variables f‘.».»

(not Q or evidence):

= Pick a hidden variable H . / l/’ ,
= Join all factors mentioning H i Q»!

= Eliminate (sum out) H

1

Z

Join all remaining factors and normalize
° [-m-l X



P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+]

0.3

+t

0.7

-t

+]

0.1

-t

0.9

Join R

—>

Marginalizing Early! (aka VE)

P(R,T)

+r

+t

0.08

+r

-t

0.02

-

+t

0.09

-r

-t

0.81

R, T

®

P(L|T)

+t

+]

0.3

+t

0.7

+]

0.1

0.9

Sum out R

—>

P(T)

+t

0.17

-t

0.83

P(L|T)

+t

+]

0.3

+t

0.7

+]

0.1

0.9

JoinT

—>

Sumout T

Q>

P(T,L)

—>

+t

+]

0.051

+t

0.119

+|

0.083

0.747

L

P(L)

+l

0.134

0.866




Bayes’ Net Sampling Summary

= Prior Sampling P = Rejection Sampling P(Q | e)




Prior Sampling

PC)
+C 0.5
-C 0.5

P(S|C)
+c | +s [ 0.1
-s [ 0.9
-c | +s [ 0.5
-s [ 0.5
P(W|S, R)

+5 +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

-s +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

P(R|C)

+C

+r

0.8

0.2

+r

0.2

0.8

Samples:

+C, -S, +I, +W

-C, +S, -I, +W




Rejection Sampling

" Let’s say we want P(C)

= No point keeping all samples around
= Just tally counts of C as we go

" Let’s say we want P(C| +s)

= Same thing: tally C outcomes, but
ignore (reject) samples which don’t
have S=+s

+C, -S, +I, +W

" This is called rejection sampling +C, +S, +T, +W

" |tis also consistent for conditional -C, +S, +1, -W

probabilities (i.e., correct in the limit) +C, S, 1, tW
-C, =S, -f, *W



Likelihood Weighting

P(C
+C 0.5
-C 0.5

P(S|C)
+c | +s [ 0.1
-s 1 0.9
-c | +s [ 0.5
-s [ 0.5
P(W|S, R)

+5 +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

-S +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

P(R|C)

+C

+r

0.8

0.2

+r

0.2

0.8

Samples:

w = 1.0x0.1x0.99

+C, +S, +I, +W




Gibbs Sampling Example: P(S | +r)

= Step 2: Initialize other variables
= Randomly

= Step 1: Fix evidence

= R=+4r

= Steps 3: Repeat
= Choose a non-evidence variable X at random
= Resample X from P( X | all other variables)

e&@o&e»e%@ e&@

Sample from P(S|+ ¢, —w,+r)  Sample from P(C|+ s, —w,+r) Sample from P(W|+ s, +c, +7r)




