Constraint Satisfaction Problems I
Filtering, ordering

g
i

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?

= |n what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Filtering

Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
WA NT| qQ
SA NSW.
Vv

WA NT Q NSW \' SA

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

= Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW V SA
NT i I I ICE T IrErirer
‘ A s B PE[ErEErE[EeE] in]
A — I I I D I |

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
= Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint
NSW

e
O

@ Delete from the tail!

NT WA NT Q NSW \ SA
Q

3 I I I I Irer

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

4

WA NT Q NSW Y SA
I | 1 [m E[ErN] 1

0

®
" |mportant: If X loses a value, neighbors of X need to be rechecked!
= Arc consistency detects failure earlier than forward checking Remember-
= Can be run as a preprocessor or after each assignment Delete from
= What's the downside of enforcing arc consistency? the tail!

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xo, ..., X, }
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(Xi, X;) <~ REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;. X;) then
for each X in NEIGHBORS[X] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «+— false
for each r in DOMAIN[X,] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; «» X
then delete 2 from DOMAIN[X}]; removed « true
return removed

= Runtime: O(n%d3), can be reduced to O(n?d?)
= .. but detecting all possible future problems is NP-hard — why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

= After enforcing arc
consistency:

= Can
= Can
= Can

nave one solution left

nave multiple solutions left

nave no solutions left (and

not know it)

= Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

Ordering

Ordering: Minimum Remaining Values

= Variable Ordering: Minimum remaining values (MRV):
* Choose the variable with the fewest legal left values in its domain

==

= Why min rather than max?

= Also called “most constrained variable”
= “Fail-fast” ordering

Ordering: Least Constraining Value

" Value Ordering: Least Constraining Value
= @Given a choice of variable, choose the least “_Lt:

constraining value
" |.e., the one that rules out the fewest values in ‘_Lb

the remaining variables

= Note that it may take some computation to ‘ ’:

determine this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible

