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Bayes’ Nets 

 A Bayes’ net is an 

 efficient encoding 

 of a probabilistic 

 model of a domain 

 

 Questions we can ask: 
 

 Inference: given a fixed BN, what is P(X | e)? 
 

 Representation: given a BN graph, what kinds of distributions can it encode? 
 

 Modeling: what BN is most appropriate for a given domain? 



Bayes’ Net Semantics 

 A directed, acyclic graph, one node per random variable 
 

 A conditional probability table (CPT) for each node 
 

 A collection of distributions over X, one for each combination 
of parents’ values 
 
 

 

 Bayes’ nets implicitly encode joint distributions 
 

 As a product of local conditional distributions 
 

 To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together: 
 

 
 



Example: Alarm Network 

B P(B) 

+b 0.001 

-b 0.999 

E P(E) 

+e 0.002 

-e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 

+b +e -a 0.05 

+b -e +a 0.94 

+b -e -a 0.06 

-b +e +a 0.29 

-b +e -a 0.71 

-b -e +a 0.001 

-b -e -a 0.999 

A J P(J|A) 

+a +j 0.9 

+a -j 0.1 

-a +j 0.05 

-a -j 0.95 

A M P(M|A) 

+a +m 0.7 

+a -m 0.3 

-a +m 0.01 

-a -m 0.99 

B E 

A 

M J 
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Size of a Bayes’ Net 

 How big is a joint distribution over N 
Boolean variables? 

2N 

 

 How big is an N-node net if nodes 
have up to k parents? 

O(N * 2k+1) 
 

 Both give you the power to calculate 
 

 

 BNs: Huge space savings! 
 

 Also easier to elicit local CPTs 
 

 Also faster to answer queries (coming)  
 



Bayes’ Nets 

 Representation 
 

 Conditional Independences 
 

 Probabilistic Inference 
 

 Learning Bayes’ Nets from Data 



Conditional Independence 

 X and Y are independent if 

 
 

 X and Y are conditionally independent given Z 
 

 

 (Conditional) independence is a property of a distribution 

 

 Example:  

 



Bayes Nets: Assumptions 

 Assumptions we are required to make to define the 
Bayes net when given the graph: 

 
 

 Beyond above “chain rule  Bayes net” conditional 
independence assumptions  

 

 Often additional conditional independences 
 

 They can be read off the graph 
 

 Important for modeling: understand assumptions made 
when choosing a Bayes net graph 



Example 

 Conditional independence assumptions directly from simplifications in chain rule: 

 

 

 

 Additional implied conditional independence assumptions? 

X Y Z W 

P(X, Y, Z, W)   = P(X) P(Y|X) P(Z|X,Y) P(W|X,Y,Z)   (using chain rule)  

 = P(X) P(Y|X) P(Z|Y)    P(W|Z) 



Independence in a BN 

 Important question about a BN: 
 Are two nodes independent given certain evidence? 

 If yes, can prove using algebra (tedious in general) 

 If no, can prove with a counter example 

 Example: 

 

 

 

 Question: are X and Z necessarily independent? 
 Answer: no.  Example: low pressure causes rain, which causes traffic. 

 X can influence Z, Z can influence X (via Y) 

 Addendum: they could be independent: how? 

X Y Z 



D-separation: Outline 

 Study independence 
properties for triples 

 

 Analyze complex cases in 
terms of member triples 

 

 D-separation: a condition / 
algorithm for answering 
such queries 

 



Causal Chains 

 This configuration is a “causal chain” 
 
 
 
 

 

 
 
 
 
 

X: Low pressure          Y: Rain                          Z: Traffic 

 Guaranteed X independent of Z ?   No! 
 

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed. 

 
 Example: 

 

 Low pressure causes rain causes traffic, 
    high pressure causes no rain causes no  
    traffic 

 

 In numbers: 
  
    P( +y | +x ) = 1, P( -y | - x ) = 1, 
    P( +z | +y ) = 1, P( -z | -y ) = 1 
 (X is always equal to Z) 
  

 
 



Causal Chains 

 This configuration is a “causal chain” 
 
 
 
 

 

 
 
 
 
 

 Guaranteed X independent of Z given Y? 
 
 
 
 
 
 
 
 
 
 

 

 Evidence along the chain “blocks” the 
influence 

Yes! 

X: Low pressure          Y: Rain                          Z: Traffic 



Common Cause 

 This configuration is a “common cause” 
 
 
 
 

 

 
 
 
 
 

 Guaranteed X independent of Z ?   No! 
 

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed. 

 
 Example: 

 

 Project due causes both forums busy 
and lab full  
 

 In numbers: 
  
         P( +x | +y ) = 1, P( -x | -y ) = 1, 
      P( +z | +y ) = 1, P( -z | -y ) = 1 
      (X is always equal to Z) 

Y: Project 
due 

X: Forums 
busy 

Z: Lab full 



Common Cause 

 This configuration is a “common cause” 
 
 
 
 

 

 
 
 
 
 

 Guaranteed X and Z independent given Y? 
 
 
 
 
 
 
 
 
 
 
 

 

 Observing the cause blocks influence 
between effects. 

 

Yes! 

Y: Project 
due 

X: Forums 
busy 

Z: Lab full 



Common Effect 

 Last configuration: two causes of one 
effect (v-structures) 

 

Z: Traffic 

 Are X and Y independent? 
 

 Yes: the ballgame and the rain cause traffic, but 
they are not correlated 

 

 Still need to prove they must be (try it!) 
 

 Are X and Y independent given Z? 
 

 No: seeing traffic puts the rain and the ballgame in 
competition as explanation. 

 

 This is backwards from the other cases 
 

 Observing an effect activates influence between 

possible causes. 

 

X: Raining Y: Ballgame 



The General Case 



The General Case 

 General question: in a given BN, are two variables independent 
(given evidence)? 

 

 Solution: analyze the graph 

 

 Any complex example can be broken 

    into repetitions of the three canonical cases 

 

 



Reachability 

 Recipe: shade evidence nodes, look 
for paths in the resulting graph 

 

 Attempt 1: if two nodes are connected 
by an undirected path not blocked by 
a shaded node, they are conditionally 
independent 

 

 Almost works, but not quite 
 Where does it break? 

 Answer: the v-structure at T doesn’t count 
as a link in a path unless “active” 

R 

T 

B 

D 

L 



Active / Inactive Paths 

 Question: Are X and Y conditionally independent given 
evidence variables {Z}? 
 Yes, if X and Y “d-separated” by Z 
 Consider all (undirected) paths from X to Y 
 No active paths = independence! 

 

 
 A path is active if each triple is active: 

 Causal chain A  B  C where B is unobserved (either direction) 
 Common cause A  B  C where B is unobserved 
 Common effect (aka v-structure) 
 A  B  C where B or one of its descendants is observed 
  

 
 All it takes to block a path is a single inactive segment 

 
  

Active Triples Inactive Triples 



 Query:  
 

 Check all (undirected!) paths between        and  
 

 If one or more active, then independence not guaranteed 

    

 

 Otherwise (i.e. if all paths are inactive), 

    then independence is guaranteed 

D-Separation 

? 



Example 

Yes R 

T 

B 

T’ 



Example 

R 

T 

B 

D 

L 

T’ 

Yes 

Yes 

Yes 



Example 

 Variables: 

 R: Raining 

 T: Traffic 

 D: Roof drips 

 S: I’m sad 

 Questions: 

 

T 

S 

D 

R 

Yes 



Structure Implications 

 Given a Bayes net structure, can run d-
separation algorithm to build a complete list of 
conditional independences that are necessarily 
true of the form 

 

 

 

 

 This list determines the set of probability 
distributions that can be represented  

 

 

 

 



Computing All Independences 

X 

Y 

Z 

X 

Y 

Z 

X 

Y 

Z 

X 

Y 

Z 



X 

Y 

Z 

Topology Limits Distributions 

 Given some graph topology 
G, only certain joint 
distributions can be 
encoded 

 

 The graph structure 
guarantees certain 
(conditional) independences 

 

 (There might be more 
independence) 

 

 Adding arcs increases the 
set of distributions, but has 
several costs 

 

 Full conditioning can encode 
any distribution 

X 

Y 

Z 

X 

Y 
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Bayes Nets Representation Summary 

 Bayes nets compactly encode joint distributions 

 

 Guaranteed independencies of distributions can be 
deduced from BN graph structure 

 

 D-separation gives precise conditional independence 
guarantees from graph alone 

 

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable until 
you inspect its specific distribution 

 



Bayes’ Nets 

 Representation 
 

 Conditional Independences 
 

 Probabilistic Inference 

 Enumeration (exact, exponential complexity) 

 Variable elimination (exact, worst-case 

  exponential complexity, often better) 

 Probabilistic inference is NP-complete 

 Sampling (approximate) 
 

 Learning Bayes’ Nets from Data 


