
Designing data types

Fundamentals of Computer Science • Keith Vertanen

Overview

• Object Oriented Programming (OOP)

• Data encapsulation

– Important consideration when designing a class

– Access modifiers

– Immutability, preventing change to a variable

• Checking for equality

– Not always has simple as you might think!

• floating-point variables

• reference variables

• String variables

2

Object Oriented Programming
• Procedural programming [verb-oriented]

– Tell the computer to do this

– Tell the computer to do that

• OOP philosophy

– Software simulation of real world

– We know (approximately) how the real world works

– Design software to model the real world

• Objected oriented programming (OOP) [noun-oriented]

– Programming paradigm based on data types

– Identify: objects that are part of problem domain or solution
• Objects are distinguishable from each other (references)

– State: objects know things (instance variables)

– Behavior: objects do things (methods)
3

Alan Kay

• Alan Kay [Xerox PARC 1970s]

– Invented Smalltalk programming language

– Conceived portable computer

– Ideas led to: laptop, modern GUI, OOP

Alan Kay
2003 Turing Award

 “The computer revolution hasn't started yet.”

 “The best way to predict the future is to invent it.”

 “If you don't fail at least 90 per cent of the time,

 you're not aiming high enough.”

 — Alan Kay

Dynabook: A Personal
Computer for Children of All
Ages, 1968.

4

Data encapsulation
• Data type (aka class)

– "Set of values and operations on those values"

– e.g. int, String, Charge, Picture, Enemy, Player

• Encapsulated data type

– Hide internal representation of data type.

• Separate implementation from design specification

– Class provides data representation & code for operations

– Client uses data type as black box

– API specifies contract between client and class

• Bottom line:

– You don't need to know how a data type is implemented
in order to use it

5

Intuition

Client API
 - volume
 - change channel
 - adjust picture
 - decode NTSC signal

Implementation
 - cathode ray tube
 - electron gun
 - Sony Wega 36XBR250
 - 241 pounds

Client needs to know
how to use API

Implementation needs to know
what API to implement

Implementation and client need to
agree on API ahead of time.

6

Intuition

Client API
 - volume
 - change channel
 - adjust picture
 - decode NTSC signal

Implementation
 - gas plasma monitor
 - Samsung FPT-6374
 - wall mountable
 - 4 inches deep

Can substitute better implementation
without changing the client.

Client needs to know
how to use API

Implementation needs to know
what API to implement

7

8

"When someone says to you, Y2K is not a problem. Inform them that it
already is... one trillion dollars - and rising." --Richard Anderson

Time Bombs

• Internal representation changes

– [Y2K] Two digit years: Jan 1, 2000

– [Y2038] 32-bit seconds since 1970: Jan 19, 2038

• Lesson

– By exposing data representation to client, may need
to sift through millions of lines of code to update

http://xkcd.com/607/

9

http://xkcd.com/607/

Access modifiers

• Access modifier

– All instance variables and methods have one:

• public - everybody can see/use

• private - only class can see/use

• default - everybody in package (stay tuned), what you
get if you don't specify an access modifier!

• protected - everybody in package and subclasses (stay
tuned) outside package

– Normally:

• Instance variables are private

• API methods the world needs are public

• Helper methods used only inside the class are private

10

Data encapsulation example

11

public class Person
{
 private String name = "";
 private double score = 0.0;

 public String toString()
 {
 return name;
 }
 ...
}

• Person class
– Originally stored first & last name in one instance variable

– Now we want them separated → change instance vars

public class Person
{
 private String first = "";
 private String last = "";
 private double score = 0.0;

 public String toString()
 {
 String result = first;
 result += " ";
 result += last;
 return result;
 }
 ...
}

Original version, combined names New version, names separated.

Non-encapsulated example

• What if instance variables were public?

– Client program might use instead of methods

12

public class Person
{
 public String first = "";
 public String last = "";
 public double score = 0.0;

 public String toString()
 {
 String result = first;
 result += " ";
 result += last;
 return result;
 }
 ...
}

...
Person p = new Person("Bob Dole");

System.out.println(p.name +
 " " +
 p.score);

...

Non-encapsulated version, instance
variables are public.

Client program.
Changing instance variables causes compile

error. Client should have been using
toString() but used instance variable

because they were publically available. Code
like this might be in many client programs!

Getters and setters

• Encapsulation does have a price

– If clients need access to instance var, must create:

• getter methods - "get" value of an instance var

• setter methods - "set" value of an instance var

13

public void setPosX(double x)
{
 posX = x;
}

public double getPosX()
{
 return posX;
}

Getter method.
Also know as an accessor method.

Setter method.
Also know as a mutator method.

Immutability

• Immutable data type

– Object's value cannot change once constructed

14

Immutability: Pros and Cons

• Immutable data type

– Object's value cannot change once constructed

• Advantages

– Avoid aliasing bugs

– Makes program easier to debug

– Limits scope of code that can change values

– Pass objects around without worrying about
modification

• Disadvantage

– New object must be created for every value

15

String immutability: consequences

16

String s = "Hello world!";
System.out.println("before : " + s);
s.toUpperCase();
System.out.println("after : " + s);

before : Hello world!
after : Hello world! Since String is

immutable, this method
call cannot change the
variable s!

String s = "Hello world!";
System.out.println("before : " + s);
s = s.toUpperCase();
System.out.println("after : " + s);

before : Hello world!
after : HELLO WORLD!

Final access modifier

• Final

– Declaring variable final means that you can assign
value only once, in initializer or constructor

• Advantages

– Helps enforce immutability

– Prevents accidental changes

– Makes program easier to debug

– Documents that the value cannot not change

This value can change in
instance methods

This value doesn't change
once the object is constructed

public class Counter
{
 private final String name;
 private int count;
 ...
}

17

Equality: integer primitives

• Boolean operator ==

– See if two variables are exactly equal

– i.e. they have identical bit patterns

• Boolean operator !=

– See if two variables are NOT equal

– i.e. they have different bit patterns

18

int a = 5;

if (a == 5)
 System.out.println("yep it's 5!");

while (a != 0)
 a--;

This is a safe
comparison since
we are using an
integer type.

Equality: floating-point primitives

• Floating-point primitives

– i.e. double and float

– Only an approximation of the number

– Use == and != at your own peril

19

double a = 0.1 + 0.1 + 0.1;
double b = 0.1 + 0.1;
double c = 0.0;

if (a == 0.3)
 System.out.println("a is 0.3!");

if (b == 0.2)
 System.out.println("b is 0.2!");

if (c == 0.0)
 System.out.println("c is 0.0!");

b is 0.2!
c is 0.0!

Equality: floating-point primitives

• Floating-point primitives

– i.e. double and float

– Only an approximation of the number

– Use == and != at your own peril

20

double a = 0.1 + 0.1 + 0.1;
double b = 0.1 + 0.1;
double c = 0.0;
final double EPSILON = 1e-9;

if (Math.abs(a - 0.3) < EPSILON)
 System.out.println("a is 0.3!");

if (Math.abs(b - 0.2) < EPSILON)
 System.out.println("b is 0.2!");

if (Math.abs(c) < EPSILON)
 System.out.println("c is 0.0!");

a is 0.3!
b is 0.2!
c is 0.0!

Equality: reference variables

• Boolean operator ==, !=

– Compares bit values of remote control

• Not the values stored in object's instance variables

– Usually not what you want

21

Ball b = new Ball(0.0, 0.0, 0.5);
Ball b2 = new Ball(0.0, 0.0, 0.5);

if (b == b2)
 System.out.println("balls equal!");

b = b2;
if (b == b2)
 System.out.println("balls now equal!");

Equality: reference variables

22

Ball b = new Ball(0.0, 0.0, 0.4);
Ball b2 = new Ball(0.0, 0.0, 0.5);

if (b == b2)
 System.out.println("balls equal!");

b = b2;
if (b == b2)
 System.out.println("balls now equal!");

b

0,0
r=0.4

b2

0,0
r=0.5

b

0,0
r=0.4

b2

0,0
r=0.5

balls now equal

Object equality

• Implement equals() instance method

– Up to class designer exactly how it works

– Client needs to call equals(), not == or !=

23

public class Ball
{
 // See if this Ball is at the same location and radius
 // as some other Ball (within a tolerance of 1e-10).
 // Ignores the color.
 public boolean equals(Ball other)
 {
 final double EPSILON = 1e-9;
 return ((Math.abs(posX - other.posX) < EPSILON) &&
 (Math.abs(posY - other.posY) < EPSILON) &&
 (Math.abs(radius - other.radius) < EPSILON));
 }
 ...
}

Equality: String variables

• Boolean operator ==, !=

– Compares bit values of remote control

• A String is a reference variable

• Does not compare text stored in the String objects

– Usually not what you want

24

String a = "hello";
String b = "hello";
String c = "hell" + "o";
String d = "hell";
d = d + "o";

if (a == b) System.out.println("a equals b!");
if (b == c) System.out.println("b equals c!");
if (c == d) System.out.println("c equals d!");

a equals b!
b equals c!

Handy String methods

25

Method

int length() How many characters in this string

char charAt(int index) char value at specified index

String substring(int start, int end) Substring [start, end - 1] inclusive

boolean equals(String other) Is this string the same as another?

boolean equalsIgnoreCase(String other) Is this string the same as another
ignoring case?

String trim() Remove whitespace from start/end

String toLowerCase() Return new string in all lowercase

String toUpperCase() Return new string in all uppercase

int indexOf(String str) Index of first occurrence of specified
substring, -1 if not found

int indexOf(String str, int from) Index of next occurrence of substring
starting from index from, -1 if not found

• String is an object with lots of methods:

Equality: String variables

• Check equality with equals() method

– Each letter must be the same (including case)

26

String a = "hello";
String b = "hello";
String c = "hell" + "o";
String d = "hell";
d = d + "o";

if (a.equals(b)) System.out.println("a equals b!");
if (b.equals(c)) System.out.println("b equals c!");
if (c.equals(d)) System.out.println("c equals d!");

a equals b!
b equals c!
c equals d!

Summary

• Object oriented programming

• Data encapsulation

– Important consideration when designing a class

– Access modifiers decide who can see what

– Immutability, preventing change to a variable

• Equality

– Usually avoid == or != with floating-point types

– Usually avoid == or != with reference types

• Including String

• Implement or use the equals() method

27

