


Overview

* Recursion
— A method calling itself

* A new way of thinking about a problem
* A powerful programming paradigm
* Examples:

— Last time:

e Factorial, binary search, H-tree, Fibonacci

— Today:
e Greatest Common Divisor (GCD)
* Brownian Motion
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* Sorting things



Greatest Common Divisor

* GCD
— Find largest integer d that evenly divides p and g
—e.g. gcd(4032, 1272) = 24
* 4032=25x3%2x 7!
e 1272 =23x31x 53!
e gcd=23x31=24
* Applications
— Simplify fractions:
1272 /4032 =53 /168
— RSA cryptography



Simple GCD algorithm

* GCD

— Find largest integer d that evenly divides p and g
* Assume p >, p and g are positive integers

e Simple algorithm:

—Seti=q

— See if i evenly divides both p and ¢

* Ifyes, iis the GCD

— Decrement i
— Repeat untili=1

public static long gcd(long p, long q)

{

for (long i =q; 1 > 1; i--)
{
if ((p% 1 ==0) & (q % i == 09))
return i;

}

return 1;




Euclid's GCD algorithm

* GCD

— Find largest integer d that evenly divides p and g
 Assume p > q, p and g are positive integers

e Euclid's algorithm (300 BC)

if g=0 <€— base case

gcd(q, p % q) otherwise €— reduction step,
converges to base case

ged(p, q) =

gcd(4032, 1272)

= gcd(1272, 216) €T 4032 = 3 x 1272 + 216
= gcd(216, 192) €= 1272 = 5 x 216 + 192
= gcd(192, 24)€—t————216 = 1 x 192 + 24
= gcd(24, 0) €&—————tmee. 192 = 8 X 24 + 0

24




Greatest Common Divisor

* GCD

— Find largest integer d that evenly divides p and g
* Assume p >, p and g are positive integers

p if g=0 € base case
ng(p’ Q) =

gcd(g, p % q) otherwise <= reduction step,
converges to base case

p = 8x




Greatest Common Divisor

* GCD

— Find largest integer d that evenly divides p and g
* Assume p >, p and g are positive integers

p if g=0 € base case
ng(p’ Q) =

gcd(g, p % q) otherwise <= reduction step,
converges to base case

public static long gcd(long p, long q)
{

if (q == 0)
return p; == base case

else ¢
return gcd(q, p % q); reduction step




Brownian motion
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— Rugged shapes of mountains and clouds




Simulating Brownian Motion

* Midpoint displacement method:
— Track interval (x,, y,) to (x4, y4)
— Choose 0 displacement randomly from Gaussian
— Divide in half, x_= (x,+x;)/2 and y_ = (y,+y,)/2 + O
— Recur on the left and right intervals



Recursive midpoint displacement algorithm

void curve(double x0, double y@, double x1, double yl, double var)

{
if (x1 - x0 < .005)

{ &—
StdDraw. line(x0, yo, x1, yl1); base case
return;

}

J

J

double xm = (x0 + x1) / 2.0
double ym = (y0 + y1) / 2.0
ym = ym + StdRandom.gaussian(@, Math.sqrt(var));

curve(xo, yo, xm, ym, var / 2.0); (\

curve(xm, ym, x1, yl, var / 2.0); reductkn1step
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Plasma cloud

Same idea, but in 2D
— Each corner of square has some greyscale value
— Divide into four sub-squares
— New corners: avg of original corners, or all 4 + random

— Recur on four sub-squares
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Divide and conquer

* Divide and conquer paradigm
— Break big problem into small sub-problems
— Solve sub-problems recursively

— Combine results
“Divide et impera. Vendi, vidi, vici.”
-Julius Caesar

* Used to solve many important problems
— Sorting things, mergesort: O(N log N)
— Parsing programming languages
— Discrete FFT, signal processing
— Multiplying large numbers
— Traversing multiply linked structures (stay tuned)



Divide and conquer: sorting

* Goal: Sort by number, ignore suit, aces high
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Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together
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Unsorted pile #1 Unsorted pile #2




Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together
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Merging

Take card from whichever pile has lowest card
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Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together
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Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together
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Approach
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Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together
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Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together
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Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together
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Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
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Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together
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Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

How many operations to do the merge?

Linear in the number of cards, O(N)

But how did pile 1 and 2 get sorted?

Recursively of course!

Split each pile into two halves, give
to different people to sort.
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How many split levels?
O(log,N)

How many merge levels?
O(log,N)

Operations per level?
O(N)

Total operations?
O(Nlog,N)
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Summary

e Recursion

— A method calling itself: _
 Sometimes just once, e.g. binary search
* Sometimes twice, e.g. mergesort
 Sometimes multiple times, e.g. H-tree

— All good recursion must come to an end:
e Base case that does NOT call itself recursively

— A powerful tool in computer science:
* Allows elegant and easy to understand algorithms
* (Once you get your head around it)

27



