

Overview

* Recursion
— A method calling itself

* A new way of thinking about a problem
* A powerful programming paradigm
* Examples:

— Last time:

e Factorial, binary search, H-tree, Fibonacci

— Today:
e Greatest Common Divisor (GCD)
* Brownian Motion

1
1

* Sorting things

Greatest Common Divisor

* GCD
— Find largest integer d that evenly divides p and g
—e.g. gcd(4032, 1272) = 24
* 4032=25x3%2x 7!
e 1272 =23x31x 53!
e gcd=23x31=24
* Applications
— Simplify fractions:
1272 /4032 =53 /168
— RSA cryptography

Simple GCD algorithm

* GCD

— Find largest integer d that evenly divides p and g
* Assume p >, p and g are positive integers

e Simple algorithm:

—Seti=q

— See if i evenly divides both p and ¢

* Ifyes, iis the GCD

— Decrement i
— Repeat untili=1

public static long gcd(long p, long q)

{

for (long i =q; 1 > 1; i--)
{
if ((p% 1 ==0) & (q % i == 09))
return i;

}

return 1;

Euclid's GCD algorithm

* GCD

— Find largest integer d that evenly divides p and g
 Assume p > q, p and g are positive integers

e Euclid's algorithm (300 BC)

if g=0 <€— base case

gcd(q, p % q) otherwise €— reduction step,
converges to base case

ged(p, q) =

gcd(4032, 1272)

= gcd(1272, 216) €T 4032 = 3 x 1272 + 216
= gcd(216, 192) €= 1272 = 5 x 216 + 192
= gcd(192, 24)€—t————216 = 1 x 192 + 24
= gcd(24, 0) €&—————tmee. 192 = 8 X 24 + 0

24

Greatest Common Divisor

* GCD

— Find largest integer d that evenly divides p and g
* Assume p >, p and g are positive integers

p if g=0 € base case
ng(p’ Q) =

gcd(g, p % q) otherwise <= reduction step,
converges to base case

p = 8x

Greatest Common Divisor

* GCD

— Find largest integer d that evenly divides p and g
* Assume p >, p and g are positive integers

p if g=0 € base case
ng(p’ Q) =

gcd(g, p % q) otherwise <= reduction step,
converges to base case

public static long gcd(long p, long q)
{

if (q == 0)
return p; == base case

else ¢
return gcd(q, p % q); reduction step

Brownian motion

o o ey Sy

* Models many natural and artificial = Fefismed L
AR SO AT

phenomenon Ayt A

— Motion of pollen grains in water S Bl e

PR T

— Price of stocks

Ny AM/ | A v

) | ﬁ | | VAT Ty V

i b /N W4 AT
' J \ “ » .\ “‘k‘r ‘.«V' Y " ;r’ U\ ‘M} W I "\.H\‘“
f k"i’ ¥

\“

3 8 ap o E@@@@@W@WWW@@WWGW@@@WWWW@WW?

8 1999 01 2002 2003 2004 2005 2006 2007 2008 '09 2010 2011 2012 2013 201

— Rugged shapes of mountains and clouds

Simulating Brownian Motion

* Midpoint displacement method:
— Track interval (x,, y,) to (x4, y4)
— Choose 0 displacement randomly from Gaussian
— Divide in half, x_= (x,+x;)/2 and y_ = (y,+y,)/2 + O
— Recur on the left and right intervals

Recursive midpoint displacement algorithm

void curve(double x0, double y@, double x1, double yl, double var)

{
if (x1 - x0 < .005)

{ &—
StdDraw. line(x0, yo, x1, yl1); base case
return;

}

J

J

double xm = (x0 + x1) / 2.0
double ym = (y0 + y1) / 2.0
ym = ym + StdRandom.gaussian(@, Math.sqrt(var));

curve(xo, yo, xm, ym, var / 2.0); (\

curve(xm, ym, x1, yl, var / 2.0); reductkn1step

10

Plasma cloud

Same idea, but in 2D
— Each corner of square has some greyscale value
— Divide into four sub-squares
— New corners: avg of original corners, or all 4 + random

— Recur on four sub-squares

('1 +('3

At o Cr+Cy

T~ (<'1+<'::<'3+('4) + 65

C3 C3+Cy C4

11

Divide and conquer

* Divide and conquer paradigm
— Break big problem into small sub-problems
— Solve sub-problems recursively

— Combine results
“Divide et impera. Vendi, vidi, vici.”
-Julius Caesar

* Used to solve many important problems
— Sorting things, mergesort: O(N log N)
— Parsing programming languages
— Discrete FFT, signal processing
— Multiplying large numbers
— Traversing multiply linked structures (stay tuned)

Divide and conquer: sorting

* Goal: Sort by number, ignore suit, aces high

w9 vl el e o S| e o] o | 5wl [t

v V.Y 4

v [2vl 1B |7 | B y

O A AN (B e (® s e vy e v
Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

v
v

Unsorted pile #1 Unsorted pile #2

Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

>>
>R
>5

Sorted pile #1

8

1 e
Sorted pile #2

Merging

Take card from whichever pile has lowest card

16

Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

>

b b

R A 2

Sorted pile #1

Sorted pile #2

17

Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

o
<

Me

Sorted pile #1 Sorted pile #2

18

Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

o
<

Me

Sorted pile #1 Sorted pile #2

19

Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

12
%
| a¥a 9
— & A — @y

Sorted pile #1 Sorted pile #2

20

Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

[
== rym—
3. ‘e
;‘Jt . 22

Sorted pile #1 Sorted pile #2

21

Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

3

‘e

d ¥

| &

~ rommmm
%)
)

Me

Sorted pile #1 Sorted pile #2

22

Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

é
‘e

U

| &

Me

Sorted pile #1 Sorted pile #2

23

Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

A
L)

A

v
v

Sorted pile #1 Sorted pile #2

24

Approach

1) Split in half (or as close as possible)
2) Give each half to somebody to sort
3) Take two halves and merge together

Sorted pile #1 Sorted pile #2

How many operations to do the merge?

Linear in the number of cards, O(N)

But how did pile 1 and 2 get sorted?

Recursively of course!

Split each pile into two halves, give
to different people to sort.

25

3827 (433|982 (10

38|27 |43 |3 9(82 |10
38 | 27 43 | 3 9 |82 10
ol N
38 27 43 3 9 82 10
27 | 38 3143 9 |82 10

327 |38 |43 10 | 82

3[{9(10 (27 38|43 |82

How many split levels?
O(log,N)

How many merge levels?
O(log,N)

Operations per level?
O(N)

Total operations?
O(Nlog,N)

26

Summary

e Recursion

— A method calling itself: _
 Sometimes just once, e.g. binary search
* Sometimes twice, e.g. mergesort
 Sometimes multiple times, e.g. H-tree

— All good recursion must come to an end:
e Base case that does NOT call itself recursively

— A powerful tool in computer science:
* Allows elegant and easy to understand algorithms
* (Once you get your head around it)

27

