
Network principles, the web and HTTP 

Computer Networking: A Top Down Approach  
6th edition  

Jim Kurose, Keith Ross 

Addison-Wesley 
Some materials copyright 1996-2012 

J.F Kurose and K.W. Ross, All Rights Reserved 



Overview 

• Chapter 2: Application Layer 

– Many familiar services operate here 

• Web, email, Skype, P2P file sharing 

– Socket programming 

• Network architectures 

– Client/server vs. Peer-to-peer 

• Network principles 

• The Web 

– History 

– Basic operation 

2 

application 

 

transport 

 

network 

 

link 

 

physical 



Some network apps 

• E-mail 

• Web 

• Text messaging 

• Remote login 

• P2P file sharing 

• Multi-user network 
games 

• Streaming stored video 

– YouTube, Hulu, Netflix 

3 

• Voice over IP 

– Skype 

• Real-time video 
conferencing 

• Social networking 

• Search 

• … 



Creating a network app 

4 

Write programs that: 

• Run on (different) end systems 

• Communicate over network 

• e.g. web server software 
communicates with browser 
software 

No need to write software for 
network-core devices 

• Network-core devices do not run 
user applications  

• Applications on end systems  
allows for rapid app development 

application 

transport 

network 

data link 

physical 

application 

transport 

network 

data link 

physical 

application 

transport 

network 

data link 

physical 



Client-server architecture 

5 

client/server 

Server:  
• Always-on host 

• Permanent IP address 

• Data centers for scaling 

Clients: 
• Communicate with server 

• May be intermittently 
connected 

• May have dynamic IP 
addresses 

• Do not communicate directly 
with each other 



Peer-to-Peer (P2P) architecture 

6 

• No always-on server 

• Arbitrary end systems 
directly communicate 

• Peers request service from 
other peers, provide service 
in return to other peers 

– Self scalability – new 
peers bring new capacity 
as well as demands 

• Peers are intermittently 
connected and change IP 
addresses 

– Complex management 

 

 

peer-peer 



Processes communicating 

7 

Process: program running within a host 

• Within same host, two processes communicate using          
inter-process communication (defined by OS) 

• Processes in different hosts communicate by exchanging 
messages 

Client process:  
Process that initiates communication 

Server process:  
Process that waits to be contacted 

 Aside: applications with 

P2P architectures have 

client processes and 

server processes too 

Clients, Servers 



Sockets 

8 

• Process sends/receives messages to/from its socket 

• Socket analogous to door 

– Sending process shoves message out door 

– Relies on transport infrastructure on other side to deliver 
message to socket at receiving process 

Internet 

Controlled 

by OS 

 

Controlled by 
app developer 

transport 

application 

physical 

link 

network 

process 

transport 

application 

physical 

link 

network 

process 
socket 



Addressing processes 

9 

• To receive messages, 
process  must have 
identifier 

• Host device has unique 
32-bit IP address 

• Q: Does  IP address of 
host on which process 
runs suffice for 
identifying the process? 

• Identifier includes both 
IP address and port 
numbers associated with 
process on host 

• Example port numbers: 

– HTTP server: 80 

– Mail server: 25 

• To send HTTP message 
to gaia.cs.umass.edu 
web server: 

– IP address: 
128.119.245.12 

– Port number: 80 

 A: No, many processes 
can be running on 
same host 



App-layer protocol defines 

10 

• Types of messages 
exchanged,  

– e.g. request, response  

• Message syntax: 

– what fields in messages 
& how fields are 
delineated 

• Message semantics  

• Rules for when and 
how processes send & 
respond to messages 

Open protocols: 

• Defined in RFCs 

• Allows for interoperability 

• e.g. HTTP, SMTP 

Proprietary protocols: 

• e.g. Skype 



What services does an app need? 

11 

Data integrity 
• Some apps require 100% 

reliable data transfer  
– File transfers 

– Web transactions 

• Other apps can tolerate some 
loss 
– Internet radio 

 Timing 
• Some apps require low 

delay to be "effective" 
– Internet telephony 

– Interactive games 

Throughput 
• Some apps require minimum 

amount of throughput to be 
effective 
– Multimedia 

• Other "elastic" apps make use 
of whatever throughput they 
get 
– File transfers 

– Electronic mail 

Security 
• Encryption, data integrity, 

end-point authentication 



Requirements: common apps 

12 

application 
 

file transfer 
e-mail 

Web documents 
real-time audio/video 

 
stored audio/video 

interactive games 
text messaging 

data loss 
 
no loss 
no loss 
no loss 
loss-tolerant 
 
loss-tolerant 
loss-tolerant 
no loss 

throughput 
 
elastic 
elastic 
elastic 
audio: 5kbps-1Mbps 
video:10kbps-5Mbps 
same as above  
few kbps up 
elastic 

time sensitive 
 
no 
no 
no 
yes, 100's msec 
 
yes, few secs 
yes, 100's msec 
yes and no 



Internet transport protocols 

13 

TCP service: 
• Reliable transport between 

sending and receiving 
process 

• Flow control: sender won't 
overwhelm receiver  

• Congestion control: throttle 
sender when network 
overloaded 

• Does not provide: timing, 
minimum throughput 
guarantee, security 

• Connection-oriented: setup 
required between client and 
server processes 

UDP service: 
• Unreliable data transfer 

between sending and 
receiving process 

• Does not provide: reliability, 
flow control, congestion 
control, timing, throughput 
guarantee, security, or 
connection setup 

 

Q: Why bother?  Why is there 
a UDP? 



Internet apps: transport protocols 

14 

application 
 

e-mail 
remote terminal access 

Web  
file transfer 

streaming multimedia 
 

Internet telephony 

 

application 
layer protocol 
 
SMTP [RFC 2821] 
Telnet [RFC 854] 
HTTP [RFC 2616] 
FTP [RFC 959] 
HTTP (e.g., YouTube),  
RTP [RFC 1889] 
SIP, RTP, proprietary 
(e.g., Skype) 

underlying 
transport protocol 
 
TCP 
TCP 
TCP 
TCP 
TCP or UDP 
 
 
TCP or UDP 



Securing TCP 

15 

TCP & UDP  

• No encryption 

• Cleartext passwords sent 
traverse Internet  in 
cleartext 

SSL  

• Provides encrypted TCP 
connection 

• Data integrity 

• End-point authentication 

SSL is at app layer 

• Apps use SSL libraries, 
which "talk" to TCP 

SSL socket API 

• Cleartext passwords sent 
traverse Internet 
encrypted 

• See chapter 7 



• Early 1990's: 
– ARPAnet decommissioned 

• 1991: 
– NSF lifts restrictions on commercial use of NSFnet 

• Early 1990's: 
– Web based on hypertext 
– [Bush 1945, Nelson 1960's] 

• Late 1990's: 
– Commercialization of the web 

• 2000's: 
– More killer apps: instance messaging, P2P file sharing 
– Network security becomes important 
– Estimated 50 million hosts, 100+ million users 
– Backbone links running at Gbps 

 
 
 

 

1990, 2000's: commercialization, the Web, new apps 

Internet history 

16 





• 1989 Tim Berners-Lee at CERN 

• 1990 HTTP/0.9, HTML, URLs, 
first text-based browser 

• 1993 Marc Andreesen releases 
NCSA Mosaic, graphical browser 

• 1993 CERN agrees to release 
protocol royalty-free 

• 1994 Andreesen forms Netscape  

• 1994 W3C formed, 
standardizing protocols, 
encouraging interoperability 

 

 

18 

A short history of the web 



19 

• 1994+ Browser wars between 
Netscape and IE 

• 1990s-2000 Dot com era 

A short history of the web 



20 

"In the Web's first generation, Tim Berners-Lee launched the 
Uniform Resource Locator (URL), Hypertext Transfer Protocol (HTTP), 
and HTML standards with prototype Unix-based servers and 
browsers.  
 

A few people noticed that the Web might be better than Gopher.  
 

In the second generation, Marc Andreessen and Eric Bina developed 
NCSA Mosaic at the University of Illinois.  
 

Several million then suddenly noticed that the Web might be better 
than sex.  
 

In the third generation, Andreessen and Bina left NCSA to found 
Netscape..." 
 

 Microsoft and Netscape open some new fronts in escalating Web Wars 
 By Bob Metcalfe, InfoWorld, August 21, 1995, Vol. 17, Issue 34. 



Architecture of the web 

21 



Web components: finding stuff 
• Uniform Resource Locator (URL) 

– A page's worldwide name 

– Three parts: 
• Protocol (scheme) 

• DNS name of machine 

• Hierarchical name that models a file directory structure 

 

22 



Web components: finding stuff 
• URL points to one specific host 

• Uniform Resource Identifier (URI) 

– Say what you want, not necessarily where from 

– Uniform Resource Locators (URL) 
• http://www.amazon.com/Last-Unicorn-Peter-S-

Beagle/dp/0451450523 

– Uniform Resource Name (URN) 
• urn:isbn:0451450523 

23 

URL: ftp://ftp.is.co.za/rfc/rfc1808.txt 
URL: http://www.ietf.org/rfc/rfc2396.txt: URL 
URL: ldap://[2001:db8::7]/c=GB?objectClass?one: URL 
URL: mailto:John.Doe@example.com: URL 
URL: news:comp.infosystems.www.servers.unix: URL 
URL: telnet://192.0.2.16:80/: URL 
URN (not URL): urn:oasis:names:specification:docbook:dtd:xml:4.1.2: 
URN (not URL): tel:+1-816-555-1212 (?) 



Web components: HTML 
• HyperText Markup Language (HTML) 

– Hypertext documents in ASCII form 

– Format text, add images, embed hyperlinks 

– Web browser renders 

• Simple and easy to learn 

– Hack up in any text editor 

– Or use a fancy authoring program 

• Web page 

– Base HTML file references objects 

– Each object has its own URL 

24 

Inspired by fiction?  1941 

Hypertext Editing System IBM 
2250 - Brown University 1969 



HTML versions 

25 

1995 1997 1998 1990 2014? 



Web components: HTTP 
• HyperText Transfer Protocol (HTTP) 

– Simple request-response protocol 

– Runs over TCP on port 80 

– ASCII format request and response messages 

– A stateless protocol 

26 

Request line 

(GET, POST,  

HEAD commands) 

header 

 lines 

carriage return,  

line feed at start 

of line indicates 

end of header lines 

GET /index.html HTTP/1.1\r\n 

Host: www-net.cs.umass.edu\r\n 

User-Agent: Firefox/3.6.10\r\n 

Accept: text/html,application/xhtml+xml\r\n 

Accept-Language: en-us,en;q=0.5\r\n 

Accept-Encoding: gzip,deflate\r\n 

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n 

Keep-Alive: 115\r\n 

Connection: keep-alive\r\n 

\r\n 

carriage return character 

line-feed character 



request 
line 

header 
lines 

body 

method sp sp cr lf version URL 

cr lf value header field name 

cr lf value header field name 

~ ~ ~ ~ 

cr lf 

entity body ~ ~ ~ ~ 

HTTP request format 

27 



Request methods 

28 

GET /rfc.html HTTP/1.1 
Host: www.ietf.org 
User-agent: Mozilla/4.0 
 

POST /login.html HTTP/1.1 
Host: www.store.com 
User-agent: Mozilla/4.0 
Content-Length: 27 
Content-Type: application/x-www-form-urlencoded 
 
userid=joe&password=guessme 
 



Message headers 

29 



Message headers 

30 



Multiple sites on one server 

• Single server running host multiple web sites 

– Many sites hosted on same physical server, e.g. 
www.widgets.com, www.junk.com, ... 

• How does it return correct response? 

– Solution 1: Each web site has a separate IP address 

• Server splits up based on IP address 

• Requires more IP addresses 

– Solution 2: Look in HTTP header host field 

• Mandatory in HTTP/1.1 

• Single server with a single IP address 

• Allows virtual hosting 

31 



HTTP response 
• Response from server 

– Status line:  
• Protocol version, status code, status phrase 

– Response headers: extra info 

– Body: optional data 

32 

HTTP/1.1 200 OK 
Date: Thu, 17 Nov 2011 15:54:10 GMT 
Server: Apache/2.2.16 (Debian) 
Last-Modified: Wed, 14 Sep 2011 17:04:27 GMT 
Content-Length: 285 
 
<html> … 



Summary 
• Architectures for network apps 

– Client/server, Peer-to-peer (P2P) 

– Process-to-process communication via sockets 

• Services needed by network apps 

– TCP / UDP 

• The Worldwide Web 

– History 

– Basic components: 
• HTTP 

• HTML 

• URLs 

• Next time: HTTP and web in-depth 

33 


