Peer-to-Peer Applications

Computer Networking: A Top Down Approach

6th edition

Jim Kurose, Keith Ross

Addison-Wesley

Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

Overview

- Peer-to-peer applications
 - Motivation, types
 - Overlay networks
 - Napster, the rise and fall
 - Performance analysis
 - P2P vs. client-server
 - BitTorrent
 - Distributed hash tables

Overlay services: P2P

- Peer-to-peer (P2P) networks
 - Community of users pooling resources (storage space, bandwidth, CPU) to provide a service
 - e.g. Sharing MP3 files, Skype
 - Nodes are hosts willing to share
 - Links are tunnels used to transport objects of interest

Types:

- Centralized P2P central server for indexing
- Pure P2P all peers are equals
- Hybrid P2P some peers are supernodes

Overlay networks

Overlay networks

- Logical network running on top of physical network
- Support alternate routing strategies
- Experimental protocols

Overlay network

Physical Network, "underlay network"

P2P: Napster

- Napster: the rise
 - Created by Shawn Fanning
 - Christmas break, freshmen year at college
 - Allows search and sharing of MP3s
 - January 1999, Napster version 1.0
 - May 1999
 - Company founded
 - Shawn drops out of school
 - September 1999, 1st lawsuits
 - No such thing as bad publicity?
 - By 2000, 80 million users

UW-Madison, March 9th, 2000

P2P: Napster

- Napster: the fall
 - December 1999, RIAA lawsuit
 - Metallica's "I Disappear" circulates
 - Before official release, starts getting radio play
 - 2000 band files a lawsuit
 - July 2001, shutdown by lawsuits
 - 2002, relaunched as paid service
 - Record labels not keen to license
 - Files bankruptcy
 - Gave rise to many P2P alternatives
 - Forced industry out of stone age
 - iTunes

Napster users peak, Feb 2001.

Napster technology

- User installs software
 - Registers name, password, local dir with music
- Client contacts central Napster server
 - Connects via TCP
 - Provides list of music in user's directory
 - Napster updates its database
- Client searches for music
 - Napster identifies currently online client with file
 - Provides IP addresses so client can download directly
 mapster

Napster technology

- Central server continually updated
 - Easy to track music currently available and from what peer
 - Good source to prove copyright infringement
 - Single point of failure, performance bottleneck
- Peer-to-peer transfer
 - Key idea of P2P: heavy lifting done between peers
 - No need for Napster to provision lots of capacity
 - Just enough to support indexing/search needs of clients
- Proprietary protocol

File distribution: client-server vs. P2P

Question: Time to distribute file (size F) from one server to N peers?

Peer upload/download capacity is limited resource

File distribution time: client-server

- Server transmission: must sequentially send (upload)
 N file copies:
 - Time to send one copy: F/u_s
 - Time to send N copies: NF/u_s
- Client: each client must download file copy
 - d_{min} = min client download rate
 - Min client download time: F/d_{min}

Time to distribute F to N clients using client-server approach

$$D_{c-s} \ge max\{NF/u_{s_i}, F/d_{min}\}$$

increases linearly in N

File distribution time: P2P

Server transmission:

- Must upload at least one copy
- Time to send one copy: F/u_s

Client:

- Each client must download file copy
- Min client download time: F/d_{min}

Clients:

- Aggregate download of NF bits
- Max upload rate (limiting max download rate) is $u_s + \sum u_i$

Time to distribute F to N clients using P2P approach

$$D_{P2P} \ge \max\{ F/u_{s,i}, F/d_{min,i}, NF/(u_s + \sum_i u_i) \}$$

network

increases linearly in N...

... but so does this, as each peer brings service capacity

Client-server vs. P2P example

Client upload rate = u, F/u = 1 hour, $u_s = 10u$, $d_{min} \ge u_s$

P2P: BitTorrent

BitTorrent protocol

- 2001, Bram Cohen releases first implementation
- Now supported by many different clients
- 2011, ~100 million users

Motivations:

- Serve up popular content fast
 - Popularity exhibits temporal locality
 - Efficient fetching, not searching
 - Distribute same file to many peers
 - Single publisher, many downloaders
- Measures to prevent free-loading

- File divided into many 256KB chunks
 - Peers exchange the pieces by uploading and downloading to each other
 - Seed: peer with entire file

http://youtu.be/w8_JHgVNsA8

Process:

- Users find torrent of interest, open in client
- Client contacts the tracker listed in torrent file
- Gets list of peers currently transferring the file
- Joins the swarm
 - Peers currently with some/all of the file

Peer joining torrent:

- Has no chunks, but will accumulate them over time from other peers
- Registers with tracker to get list of peers, connects to subset of peers, "neighbors"

- While downloading, peer uploads chunks to other peers
- Peer may change peers with whom it exchanges chunks
- Churn: peers may come and go
- Once peer has entire file it may (selfishly) leave or (altruistically) remain in torrent

BitTorrent: requesting, sending file chunks

Requesting chunks:

- At any given time, different peers have different subsets of file chunks
- Periodically, Alice asks each peer for list of chunks that they have
- Alice requests missing chunks from peers, rarest first

Sending chunks: tit-for-tat

- Alice sends chunks to 4 peers currently sending her chunks at highest rate
 - Other peers are choked by Alice
 - Re-evaluate top 4 every 10 seconds
- Every 30 secs: randomly select another peer, starts sending chunks
 - "Optimistically unchoke" this peer
 - Newly chosen peer may join top 4

BitTorrent: tit-for-tat

- (1) Alice "optimistically unchokes" Bob
- (2) Alice becomes one of Bob's top-four providers; Bob reciprocates
- (3) Bob becomes one of Alice's top-four providers

Distributed Hash Table (DHT)

- Hash table
- DHT paradigm
- Circular DHT and overlay networks
- Peer churn

Simple database

- Simple database with (key, value) pairs:
 - Key: human name
 - Value: social security #

Key	Value
John Washington	132-54-3570
Diana Louise Jones	761-55-3791
Xiaoming Liu	385-41-0902
Rakesh Gopal	441-89-1956
Linda Cohen	217-66-5609
•••••	
Lisa Kobayashi	177-23-0199

- Key: movie title
- Value: IP address of system storing movie

Hash Table

More convenient:

- Store/search on numerical representation of key
- Key = hash(original key)

Original Key	Key	Value
John Washington	8962458	132-54-3570
Diana Louise Jones	7800356	761-55-3791
Xiaoming Liu	1567109	385-41-0902
Rakesh Gopal	2360012	441-89-1956
Linda Cohen	5430938	217-66-5609
Lisa Kobayashi	9290124	177-23-0199

Distributed Hash Table (DHT)

- Distribute (key, value) pairs over millions of peers
 - Pairs are evenly distributed over peers
- Any peer can query database with a key
 - Database returns value for the key
 - To resolve query, small number of messages exchanged among peers
- Peer only knows a small number of other peers
- Robust to peers coming and going, churn

Assign key-value pairs to peers

Rules:

- Assign key-value pair to the peer that has the closest ID
- Closest is the *immediate successor* of the key

Example:

- ID space {0, 1, 2, 3, ..., 63}
- 8 peers: 1, 12, 13, 25, 32, 40, 48, 60
- If key = 51, then assigned to peer 60
- If key = 60, then assigned to peer 60
- If key = 61, then assigned to peer 1

Circular DHT

 Each peer only aware of immediate successor and predecessor

"overlay network"

Resolving a query

Circular DHT with shortcuts

- Each peer keeps track of IP addresses of predecessor, successor, and short cuts
- Reduced from 6 to 3 messages
- Possible to design shortcuts with O(log N) neighbors, O(log N)
 messages in query

Peer churn

Handling peer churn:

- Peers may come and go (churn)
- Each peer knows address of its two successors
- Each peer periodically pings its two successors to check aliveness
- If immediate successor leaves, choose next successor as new immediate successor

Example: peer 5 abruptly leaves

- Peer 4 detects peer 5's departure; makes 8 its immediate successor
- 4 asks 8 who its immediate successor is; makes 8's immediate successor its second successor.

Summary

- Peer-to-peer applications
 - Use an overlay network
 - Logical network on top of existing physical network
 - Scale better than client-server model
 - Clients share chunks using their upload/download links
 - Finding things:
 - May be centralized (e.g. Napster)
 - Decentralized via a distributed hash table