Media access control (MAC)

Computer Networking: A Top Down Approach

6th edition Jim Kurose, Keith Ross Addison-Wesley

Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

Link layer, LANs: outline

- 5.1 Introduction, services
- 5.2 Error detection, correction
- 5.3 Multiple access protocols
- **5.4 LANs**
 - Addressing, ARP
 - Ethernet
 - Switches
 - VLANS

- 5.5 Link virtualization: MPLS
- 5.6 Data center networking
- 5.7 A day in the life of a web request

MAC sublayer

- Media Access Control (MAC) sublayer
 - Who goes next on a shared medium
- Example:
 - Ethernet hosts can sense if medium in use
 - Algorithm for sending data:
 - 1. Is medium idle? If not, wait.
 - 2. Start transmitting data, listen for collision.
 - 3. If collision detected, transmit 32-bit jamming sequence. Stop transmitting and go to backoff procedure.

Multiple access links, protocols

Two types of links:

- Point-to-point
 - PPP for dial-up access
 - Point-to-point link between Ethernet switch, host
- Broadcast (shared wire or medium)
 - Old-fashioned Ethernet
 - Upstream HFC (cable modem)
 - 802.11 wireless LAN

Shared wire (e.g., cabled Ethernet)

Shared RF (e.g., 802.11 WiFi)

Shared RF (satellite)

Humans at a cocktail party (shared air, acoustical)

Multiple access protocols

- Single shared broadcast channel
- 2+ simultaneous transmissions by nodes: interference
 - Collision if node receives 2+ signals at the same time

Multiple access protocol

- Distributed algorithm, determines how nodes share channel
 - When can a node transmit?
- Communication about channel sharing must use channel itself!
 - No out-of-band channel for coordination

An ideal multiple access protocol

Given: Broadcast channel of rate R bps

Desiderata:

- 1. When one node wants to transmit, send at rate R
- 2. When M nodes want to transmit, each can send at average rate R/M
- 3. Fully decentralized:
 - No special node to coordinate transmissions
 - No synchronization of clocks, slots
- 4. Simple

MAC protocols: taxonomy

Three broad classes:

Channel partitioning

- Divide channel into smaller pieces (time slots, frequency, code)
- Allocate piece to node for exclusive use

Random access

- Channel not divided, allow collisions
- Recover from collisions

Taking turns

Nodes take turns, but nodes with more to send can take longer turns

Channel partitioning, TDMA

TDMA: Time Division Multiple Access

- Access to channel in rounds
- Each station gets fixed length slot
 - Length = packet transmission time in each round
- Unused slots go idle
- ***** Example:
 - 6-station LAN: 1,3,4 have packet, slots 2,5,6 idle

Channel partitioning, FDMA

FDMA: frequency division multiple access

- Channel spectrum divided into frequency bands
- Each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle
- ***** Example:
 - 6-station LAN, 1,3,4 have packet, bands 2,5,6 idle

Code Division Multiple Access, CDMA

- Unique code assigned to each user
 - All users share same frequency, but each user has own chipping sequence to encode data
 - Allows multiple users to coexist and transmit simultaneously with minimal interference
- Encoded signal = (original data) x (chipping sequence)
- Decoding: inner-product of encoded signal and chipping sequence

Random access protocols

- When node has packet to send
 - Transmit at full channel data rate R
 - No a priori coordination among nodes
- Two or more transmitting nodes → collision
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions
 - e.g. via delayed retransmissions
 - Examples:
 - Slotted ALOHA, ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

Assumptions:

- ❖ All frames same size
- Time divided into equal size slots (time to transmit 1 frame)
- Nodes start to transmit only at slot beginning
- Nodes are synchronized
- ❖ If 2+ nodes transmit in slot, all nodes detect collision

Operation:

- When node obtains fresh frame, transmits in next slot
 - If no collision: node can send new frame in next slot
 - If collision: node retransmits frame in each subsequent slot with prob. p until success

Slotted ALOHA

Pros:

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

Cons:

- Collisions, wasting slots
- Idle slots
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

Slotted ALOHA: efficiency

Efficiency:

Long-run fraction of successful slots (many nodes, all with many frames to send)

- Suppose: N nodes with many frames to send, each transmits in slot with probability p
- Prob that given node has success in a slot = $p(1-p)^{N-1}$
- Prob that any node has a success = $Np(1-p)^{N-1}$

- ❖ Max efficiency: find p* that maximizes Np(1-p)^{N-1}
- For many nodes, take limit of $Np(1-p^*)^{N-1}$ as N goes to infinity, gives:

 $Max\ efficiency = 1/e = .37$

At best: channel used for useful transmissions 37% of time!

Pure (unslotted) ALOHA

- Unslotted Aloha:
 - Simpler, no synchronization
- When frame first arrives
 - Transmit immediately
- Collision probability increases:
 - Frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$

Pure ALOHA efficiency

P(success by given node) = P(node transmits).

P(no other node transmits in $[t_0-1,t_0]$.

P(no other node transmits in $[t_0-1,t_0]$

=
$$p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$

= $p \cdot (1-p)^{2(N-1)}$

... choosing optimum p and then letting $n \rightarrow \infty$

$$= 1/(2e) = .18$$

even worse than slotted Aloha!

Carrier Sense Multiple Access (CSMA)

CSMA: Listen before transmit

- If channel sensed idle: transmit entire frame
- if channel sensed busy, defer transmission
- Human analogy: don't interrupt others!

CSMA collisions

Collisions can still occur:

Propagation delay
 means two nodes may
 not hear each other's
 transmission

Collision:

- Entire packet transmission time wasted
- Distance & propagation delay play role in in determining collision probability

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- Collisions detected within short time
- Colliding transmissions aborted, reducing channel wastage

Collision detection:

- Easy in wired LANs: measure signal strengths, compare transmitted, received signals
- Difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- Human analogy: the polite conversationalist

CSMA/CD (Collision Detection)

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - After mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}.
 NIC waits K'512 bit times, returns to Step 2
 - Longer backoff interval with more collisions

CSMA/CD efficiency

- Tprop = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- Efficiency goes to 1
 - As t_{prop} goes to 0
 - As t_{trans} goes to infinity
- Better performance than ALOHA:
 - Simple, cheap, decentralized!

Taking turns MAC protocols

Channel partitioning MAC protocols:

- Share channel efficiently and fairly at high load
- Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols

- Efficient at low load: single node can fully utilize channel
- High load: collision overhead

Taking turns protocols:

Look for best of both worlds!

Taking turns MAC protocols

Polling:

- Master node invites slave nodes to transmit in turn
- Typically used with dumb slave devices
- Concerns:
 - Polling overhead
 - Latency
 - Single point of failure (master)

Taking turns MAC protocols

Token passing:

- Control token passed from one node to next sequentially.
- Token message
- Concerns:
 - Token overhead
 - Latency
 - Single point of failure (token)

Cable access network

- Multiple 40Mbps downstream (broadcast) channels
 - Single CMTS transmits into channels
- Multiple 30 Mbps upstream channels
 - Multiple access: all users contend for certain upstream channel time slots (others assigned)

Cable access network

DOCSIS: data over cable service interface specification

- FDM over upstream, downstream frequency channels
- TDM upstream: some slots assigned, some have contention
 - Downstream MAP frame: assigns upstream slots
 - Request for upstream slots (and data) transmitted random access (binary backoff) in selected slots

Summary of MAC protocols

Channel partitioning

- By time, frequency or code
- Time Division, Frequency Division, Code Division

Random access

- ALOHA, S-ALOHA, CSMA, CSMA/CD
- Carrier sensing: easy in some technologies (wired), hard in others (wireless)
- CSMA/CD used in Ethernet
- CSMA/CA used in 802.11

Taking turns

- Polling from central site, token passing
- Bluetooth, FDDI, token ring